Archive for the ‘Web’ Category

Changing networks on Mac with Firefox

Thursday, October 30th, 2014

Not too long ago I blogged about my work to better deal with changing networks while Firefox is running. That job was basically two parts.

A) generic code to handle receiving such a network-changed event and then

B) a platform specific part that was for Windows that detected such a network change and sent the event

Today I’ve landed yet another fix for part B called bug 1079385, which detects network changes for Firefox on Mac OS X.

mac miniI’ve never programmed anything before on the Mac so this was sort of my christening in this environment. I mean, I’ve written countless of POSIX compliant programs including curl and friends that certainly builds and runs on Mac OS just fine, but I never before used the Mac-specific APIs to do things.

I got a mac mini just two weeks ago to work on this. Getting it up, prepared and my first Firefox built from source took all-in-all less than three hours. Learning the details of the mac API world was much more trouble and can’t say that I’m mastering it now either but I did find myself at least figuring out how to detect when IP addresses on the interfaces change and a changed address is a pretty good signal that the network changed somehow.

daniel.haxx.se episode 8

Monday, October 27th, 2014

Today I hesitated to make my new weekly video episode. I looked at the viewers number and how they basically have dwindled the last few weeks. I’m not making this video series interesting enough for a very large crowd of people. I’m re-evaluating if I should do them at all, or if I can do something to spice them up…

… or perhaps just not look at the viewers numbers at all and just do what think is fun?

I decided I’ll go with the latter for now. After all, I enjoy making these and they usually give me some interesting feedback and discussions even if the numbers are really low. What good is a number anyway?

This week’s episode:

Personal

Firefox

Fun

HTTP/2

TALKS

  • I’m offering two talks for FOSDEM

curl

  • release next Wednesday
  • bug fixing period
  • security advisory is pending

wget

Stricter HTTP 1.1 framing good bye

Sunday, October 26th, 2014

I worked on a patch for Firefox bug 237623 to make sure Firefox would use a stricter check for “HTTP 1.1 framing”, checking that Content-Length is correct and that there’s no broken chunked encoding pieces. I was happy to close an over 10 years old bug when the fix landed in June 2014.

The fix landed and has not caused any grief all the way since June through to the actual live release (Nightlies, Aurora, Beta etc). This change finally shipped in Firefox 33 and I had more or less already started to forget about it, and now things went south really fast.

The amount of broken servers ended up too massive for us and we had to backpedal. The largest amount of problems can be split up in these two categories:

  1. Servers that deliver gzipped content and sends a Content-Length: for the uncompressed data. This seems to be commonly done with old mod_deflate and mod_fastcgi versions on Apache, but we also saw people using IIS reporting this symptom.
  2. Servers that deliver chunked-encoding but who skip the final zero-size chunk so that the stream actually never really ends.

We recognize that not everyone can have the servers fixed – even if all these servers should still be fixed! We now make these HTTP 1.1 framing problems get detected but only cause a problem if a certain pref variable is set (network.http.enforce-framing.http1), and since that is disabled by default they will be silently ignored much like before. The Internet is a more broken and more sad place than I want to accept at times.

We haven’t fully worked out how to also make the download manager (ie the thing that downloads things directly to disk, without showing it in the browser) happy, which was the original reason for bug 237623…

Although the code may now no longer alert anything about HTTP 1.1 framing problems, it will now at least mark the connection not due for re-use which will be a big boost compared to before since these broken framing cases really hurt persistent connections use. The partial transfer return codes for broken SPDY and HTTP/2 transfers remain though and I hope to be able to remain stricter with these newer protocols.

This partial reversion will land ASAP and get merged into patch releases of Firefox 33 and later.

Finally, to top this off. Here’s a picture of an old HTTP 1.1 frame so that you know what we’re talking about.

An old http1.1 frame

curl is no POODLE

Friday, October 17th, 2014

Once again the internet flooded over with reports and alerts about a vulnerability using a funny name: POODLE. If you have even the slightest interest in this sort of stuff you’ve already grown tired and bored about everything that’s been written about this so why on earth do I have to pile on and add to the pain?

This is my way of explaining how POODLE affects or doesn’t affect curl, libcurl and the huge amount of existing applications using libcurl.

Is my application using HTTPS with libcurl or curl vulnerable to POODLE?

No. POODLE really is a browser-attack.

Motivation

The POODLE attack is a combination of several separate pieces that when combined allow attackers to exploit it. The individual pieces are not enough stand-alone.

SSLv3 is getting a lot of heat now since POODLE must be able to downgrade a connection to SSLv3 from TLS to work. Downgrade in a fairly crude way – in libcurl, only libcurl built to use NSS as its TLS backend supports this way of downgrading the protocol level.

Then, if an attacker manages to downgrade to SSLv3 (both the client and server must thus allow this) and get to use the sensitive block cipher of that protocol, it must maintain a connection to the server and then retry many similar requests to the server in order to try to work out details of the request – to figure out secrets it shouldn’t be able to. This would typically be made using javascript in a browser and really only HTTPS allows this so no other SSL-using protocol can be exploited like this.

For the typical curl user or a libcurl user, there’s A) no javascript and B) the application already knows the request it is doing and normally doesn’t inject random stuff from 3rd party sources that could be allowed to steal secrets. There’s really no room for any outsider here to steal secrets or cookies or whatever.

How will curl change

There’s no immediate need to do anything as curl and libcurl are not vulnerable to POODLE.

Still, SSLv3 is long overdue and is not really a modern protocol (TLS 1.0, the successor, had its RFC published 1999) so in order to really avoid the risk that it will be possible exploit this protocol one way or another now or later using curl/libcurl, we will disable SSLv3 by default in the next curl release. For all TLS backends.

Why? Just to be extra super cautious and because this attack helped us remember that SSLv3 is old and should be let down to die.

If possible, explicitly requesting SSLv3 should still be possible so that users can still work with their legacy systems in dire need of upgrade but placed in corners of the world that every sensible human has since long forgotten or just ignored.

In-depth explanations of POODLE

I especially like the ones provided by PolarSSL and GnuTLS, possibly due to their clear “distance” from browsers.

Changing networks with Firefox running

Friday, September 26th, 2014

Short recap: I work on network code for Mozilla. Bug 939318 is one of “mine” – yesterday I landed a fix (a patch series with 6 individual patches) for this and I wanted to explain what goodness that should (might?) come from this!

diffstat

diffstat reports this on the complete patch series:

29 files changed, 920 insertions(+), 162 deletions(-)

The change set can be seen in mozilla-central here. But I guess a proper description is easier for most…

The bouncy road to inclusion

This feature set and associated problems with it has been one of the most time consuming things I’ve developed in recent years, I mean in relation to the amount of actual code produced. I’ve had it “landed” in the mozilla-inbound tree five times and yanked out again before it landed correctly (within a few hours), every time of course reverted again because I had bugs remaining in there. The bugs in this have been really tricky with a whole bunch of timing-dependent and race-like problems and me being unfamiliar with a large part of the code base that I’m working on. It has been a highly frustrating journey during periods but I’d like to think that I’ve learned a lot about Firefox internals partly thanks to this resistance.

As I write this, it has not even been 24 hours since it got into m-c so there’s of course still a risk there’s an ugly bug or two left, but then I also hope to fix the pending problems without having to revert and re-apply the whole series…

Many ways to connect to networks

Firefox Nightly screenshotIn many network setups today, you get an environment and a network “experience” that is crafted for that particular place. For example you may connect to your work over a VPN where you get your company DNS and you can access sites and services you can’t even see when you connect from the wifi in your favorite coffee shop. The same thing goes for when you connect to that captive portal over wifi until you realize you used the wrong SSID and you switch over to the access point you were supposed to use.

For every one of these setups, you get different DHCP setups passed down and you get a new DNS server and so on.

These days laptop lids are getting closed (and the machine is put to sleep) at one place to be opened at a completely different location and rarely is the machine rebooted or the browser shut down.

Switching between networks

Switching from one of the networks to the next is of course something your operating system handles gracefully. You can even easily be connected to multiple ones simultaneously like if you have both an Ethernet card and wifi.

Enter browsers. Or in this case let’s be specific and talk about Firefox since this is what I work with and on. Firefox – like other browsers – will cache images, it will cache DNS responses, it maintains connections to sites a while even after use, it connects to some sites even before you “go there” and so on. All in the name of giving the users an as good and as fast experience as possible.

The combination of keeping things cached and alive, together with the fact that switching networks brings new perspectives and new “truths” offers challenges.

Realizing the situation is new

The changes are not at all mind-bending but are basically these three parts:

  1. Make sure that we detect network changes, even if just the set of available interfaces change. Send an event for this.
  2. Make sure the necessary parts of the code listens and understands this “network topology changed” event and acts on it accordingly
  3. Consider coming back from “sleep” to be a network changed event since we just cannot be sure of the network situation anymore.

The initial work has been made for Windows only but it allows us to smoothen out any rough edges before we continue and make more platforms support this.

The network changed event can be disabled by switching off the new “network.notify.changed” preference. If you do end up feeling a need for that, I really hope you file a bug explaining the details so that we can work on fixing it!

Act accordingly

So what is acting properly? What if the network changes in a way so that your active connections suddenly can’t be used anymore due to the new rules and routing and what not? We attack this problem like this: once we get a “network changed” event, we “allow” connections to prove that they are still alive and if not they’re torn down and re-setup when the user tries to reload or whatever. For plain old HTTP(S) this means just seeing if traffic arrives or can be sent off within N seconds, and for websockets, SPDY and HTTP2 connections it involves sending an actual ping frame and checking for a response.

The internal DNS cache was a bit tricky to handle. I initially just flushed all entries but that turned out nasty as I then also killed ongoing name resolves that caused errors to get returned. Now I instead added logic that flushes all the already resolved names and it makes names “in transit” to get resolved again so that they are done on the (potentially) new network that then can return different addresses for the same host name(s).

This should drastically reduce the situation that could happen before when Firefox would basically just freeze and not want to do any requests until you closed and restarted it. (Or waited long enough for other timeouts to trigger.)

The ‘N seconds’ waiting period above is actually 5 seconds by default and there’s a new preference called “network.http.network-changed.timeout” that can be altered at will to allow some experimentation regarding what the perfect interval truly is for you.

Firefox BallInitially on Windows only

My initial work has been limited to getting the changed event code done for the Windows back-end only (since the code that figures out if there’s news on the network setup is highly system specific), and now when this step has been taken the plan is to introduce the same back-end logic to the other platforms. The code that acts on the event is pretty much generic and is mostly in place already so it is now a matter of making sure the event can be generated everywhere.

My plan is to start on Firefox OS and then see if I can assist with the same thing in Firefox on Android. Then finally Linux and Mac.

I started on Windows since Windows is one of the platforms with the largest amount of Firefox users and thus one of the most prioritized ones.

More to do

There’s separate work going on for properly detecting captive portals. You know the annoying things hotels and airports for example tend to have to force you to do some login dance first before you are allowed to use the internet at that location. When such a captive portal is opened up, that should probably qualify as a network change – but it isn’t yet.

Firefox and partial content

Monday, June 16th, 2014

Update: parts of the change mentioned in this blog post has subsequently been reverted since clearly I had a too positive view of the Internet.

Firefox BallOne of the first bugs that fell into my lap when I started working for Mozilla not a very long time ago, was bug 237623. Anyone involved in Mozilla knows a bug in that range is fairly old (we just recently passed one million filed bugs). This particular bug was filed in March 2004 and there are (right now) 26 other bugs marked as duplicates of this. Today, the fix for this problem has landed.

The core of the problem is that when a HTTP server sends contents back to a client, it can send a header along indicating the size of the data in the response. The header is called “Content-Length:”. If the connection gets broken during transfer for whatever reason and the browser hasn’t received as much data as was initially claimed to be delivered, that’s a very good hint that something is wrong and the transfer was incomplete.

The perhaps most annoying way this could be seen is when you download a huge DVD image or something and for some reason the connection gets cut off after only a short time, way before the entire file is downloaded, but Firefox just silently accept that as the end of the transfer and think everything was fine and dandy.

What complicates the issue is the eternal problem: not everything abides to the protocol. This said, if there are frequent violators of the protocol we can’t strictly fail on each case of problem we detect but we must instead do our best to handle it anyway.

Is Content-Length a frequently violated HTTP response header?

Let’s see…

  1. Back in the HTTP 1.0 days, the Content-Length header was not very important as the connection was mostly shut down after each response anyway. Alas, clients/browsers would swiftly learn to just wait for the disconnect anyway.
  2. Back in the old days, there were cases of problems with “large files” (files larger than 2 or 4GB) which every now and then caused the Content-Length: header to turn into negative or otherwise confused values when it wrapped. That’s not really happening these days anymore.
  3. With HTTP 1.1 and its persuasive use of persistent connections it is important to get the size right, as otherwise the chain of requests get messed up and we end up with tears and sad faces
  4. In curl’s HTTP parser we’ve always been strictly abiding to this header and we’ve bailed out hard on mismatches. This is a very rare error for users to get and based on this (admittedly unscientific data) I believe that there is not a widespread use of servers sending bad Content-Length headers.
  5. It seems Chrome at least in some aspects is already much more strict about this header.

My fix for this problem takes a slightly careful approach and only enforces the strictness for HTTP 1.1 or later servers. But then as a bonus, it has grown to also signal failure if a chunked encoded transfer ends without the ending trailer or if a SPDY or http2 transfer gets prematurely stopped.

This is basically a 6-line patch at its core. The rest is fixing up old test cases, added new tests etc.

As a counter-point, Eric Lawrence apparently worked on adding stricter checks in IE9 three years ago as he wrote about in Content-Length in the Real World. They apparently subsequently added the check again in IE10 which seems to have caused some problems for them. It remains to be seen how this change affects Firefox users out in the real world. I believe it’ll be fine.

This patch also introduces the error code for a few other similar network situations when the connection is closed prematurely and we know there are outstanding data that never arrived, and I got the opportunity to improve how Firefox behaves when downloading an image and it gets an error before the complete image has been transferred. Previously (when a partial transfer wasn’t an error), it would always throw away the image on an error and instead show the “image not found” picture. That really doesn’t make sense I believe, as a partial image is better than that default one – especially when a large portion of the image has been downloaded already.

Follow-up effects

Other effects of this change that possibly might be discovered and cause some new fun reports: prematurely cut off transfers of javascript or CSS will discard the entire javascript/CSS file. Previously the partial file would be used.

Of course, I doubt that these are the files that are as commonly cut off as many other file types but still on a very slow and bad connection it may still happen and the new behavior will make Firefox act as if the file wasn’t loaded at all, instead of previously when it would happily used the portions of the files that it had actually received. Partial CSS and partial javascript of course could lead to some “fun” effects of brokenness.

Http2 interim meeting NYC

Sunday, June 8th, 2014

On June 5th, around thirty people sat down around a huge table in a conference room on the 4th floor in the Google offices in New York City, with a heavy rain pouring down outside.

It was time for another IETF http2 interim meeting. The attendees were all participants in the HTTPbis work group and came from a wide variety of companies and countries. The major browser vendors were represented there, and so were operators and big service providers and some proxy people. Most of the people who have been speaking up on the mailing list over the last year or so, unfortunately with a couple of people notably absent. (And before anyone asks, yes we are a group where the majority is old males like me.)

Most people present knew many of the others already, which helped to create a friendly familiar spirit and we quickly got started on the Thursday morning working our way through the rather long lits of issues to deal with. When we had our previous interim meeting in London, I think most of us though we would’ve been further along today but recent development and discussions on the list had actually brought back a lot of issues we though we were already done with and we now reiterated a whole slew of subjects. We weren’t allowed to take photographs indoors so you won’t see any pictures of this opportunity from me here.

Google offices building logo

We did close many issues and I’ll just quickly mention some of the noteworthy ones here…

Extensions

We started out with the topic of “extensions”. Should we revert the decision from Zurich (where it was decided that we shouldn’t allow extensions in http2) or was the current state of the protocol the right one? The arguments for allowing extensions included that we’d keep getting requests for new things to add unless we have a way and that some of the recent stuff we’ve added really could’ve been done as extensions instead. An argument against it is that it makes things much simpler and reliable if we just document exactly what the protocol has and is, and removing “optional” behavior from the protocol has been one of the primary mantas along the design process.

The discussion went back and forth for a long time, and after almost three hours we had kind of a draw. Nobody was firmly against “the other” alternative but the two sides also seemed to have roughly the same amount of support. Then it was yet again time for the coin toss to guide us. Martin brought out an Australian coin and … the next protocol draft will allow extensions. Again. This also forces implementation to have to read and skip all unknown frames it receives compared to the existing situation where no unknown frames can ever occur.

BLOCKED as an extension

A rather given first candidate for an extension was the BLOCKED frame. At the time BLOCKED was added to the protocol it was explicitly added into the spec because we didn’t have extensions – and it is now being lifted out into one.

ALTSVC as an extension

What received slightly more resistance was the move to move out the ALTSVC frame as well. It was argued that the frame isn’t mandatory to support and therefore easily can be made into an extension.

Simplified padding

Another small change of the wire format since draft-12 was the removal of the high byte for padding to simplify. It reduces the amount you can pad a single frame but you can easily pad more using other means if you really have to, and there were numbers presented that said that 255 bytes were enough with HTTP 1.1 already so probably it will be enough for version 2 as well.

Schedule

There will be a new draft out really soon: draft -13. Martin, our editor of the spec, says he’ll be able to ship it in a week. That is intended to be the last draft, intended for implementation and it will then be expected to get deployed rather widely to allow us all in the industry to see how it works and be able to polish details or wordings that may still need it.

We had numerous vendors and HTTP stack implementers in the room and when we discussed schedule for when various products will be able to see daylight. If we all manage to stick to the plans. we may just have plenty of products and services that support http2 by the September/October time frame. If nothing major is found in this latest draft, we’re looking at RFC status not too far into 2015.

Meeting summary

I think we’re closing in for real now and I have good hopes for the protocol and our progress to a really wide scale deployment across the Internet. The HTTPbis group is an awesome crowd to work with and I had a great time. Our hosts took good care of us and made sure we didn’t lack any services or supplies. Extra thanks go to those of you who bought me dinners and to those who took me out to good beer places!

My http2 document

Yeah, it will now become somewhat out of date and my plan is to update it once the next draft ships. I’ll also do another http2 presentation already this week so I hope to also post an updated slide set soonish. Stay tuned!

Wireshark

My plan is to cooperate with the other Wireshark hackers and help making sure we have the next draft version supported in Wireshark really soon after its published.

curl and nghttp2

Most of the differences introduced are in the binary format so nghttp2 will need to be updated again – it is the library curl uses for the wire format of http2. The curl parts will need some adjustments, for example for Content-Encoding gzip that no longer is implicit but there should be little to do in the curl code for this draft bump.

Less plain-text is better. Right?

Tuesday, May 13th, 2014

Every connection and every user on the Internet is being monitored and snooped at to at least some extent every now and then. Everything from the casual firesheep user in your coffee shop, an admin in your ISP, your parents/kids on your wifi network, your employer on the company network, your country’s intelligence service in a national network hub or just a random rogue person somewhere in the middle of all this.

My involvement in HTTP make me mostly view and participate in this discussion with this protocol primarily in mind, but the discussion goes well beyond HTTP and the concepts can (and will?) be applied to most Internet protocols in the future. You can follow some of these discussions in the httpbis group, the UTA group, the tcpcrypt list on twitter and elsewhere.

IETF just published RFC 7258 which states:

Pervasive Monitoring Is a Widespread Attack on Privacy

Passive monitoring

Most networking surveillance can be done entirely passively by just running the correct software and listening in on the correct cable. Because most internet traffic is still plain-text and readable by anyone who wants to read it when the bytes come flying by. Like your postman can read your postcards.

Opportunistic?

Recently there’s been a fierce discussion going on both inside and outside of IETF and other protocol and standards groups about doing “opportunistic encryption” (OE) and its merits and drawbacks. The term, which in itself is being debated and often is said to be better called “opportunistic keying” (OK) instead, is about having protocols transparently (invisible to the user) upgrade plain-text versions to TLS unauthenticated encrypted versions of the protocols. I’m emphasizing the unauthenticated word there because that’s a key to the debate. Recently I’ve been told that the term “opportunistic security” is the term to use instead…

In the way of real security?

Basically the argument against opportunistic approaches tends to be like this: by opportunistically upgrading plain-text to unauthenticated encrypted communication, sysadmins and users in the world will consider that good enough and they will then not switch to using proper, strong and secure authentication encryption technologies. The less good alternative will hamper the adoption of the secure alternative. Server admins should just as well buy a cert for 10 USD and use proper HTTPS. Also, listeners can still listen in on or man-in-the-middle unauthenticated connections if they capture everything from the start of the connection, including the initial key exchange. Or the passive listener will just change to become an active party and this unauthenticated way doesn’t detect that. OE doesn’t prevent snooping.

Isn’t it better than plain text?

The argument for opportunism here is that there will be nothing to the user that shows that it is “upgrading” to something less bad than plain text. Browsers will not show the padlock, clients will not treat the connection as “secure”. It will just silently and transparently make passive monitoring of networks much harder and it will force actors who truly want to snoop on specific traffic to up their game and probably switch to active monitoring for more cases. Something that’s much more expensive for the listener. It isn’t about the cost of a cert. It is about setting up and keeping the cert up-to-date, about SNI not being widely enough adopted and that we can see only 30% of all sites on the Internet today use HTTPS – for these reasons and others.

HTTP:// over TLS

In the httpbis work group in IETF the outcome of this debate is that there is a way being defined on how to do HTTP as specified with a HTTP:// URL – that we’ve learned is plain-text – over TLS, as part of the http2 work. Alt-Svc is the way. (The header can also be used to just load balance HTTP etc but I’ll ignore that for now)

Mozilla and Firefox is basically the only team that initially stands behind the idea of implementing this in a browser. HTTP:// done over TLS will not be seen nor considered any more secure than ordinary HTTP is and users will not be aware if that happens or not. Only true HTTPS connections will get the padlock, secure cookies and the other goodies true HTTPS sites are known and expected to get and show.

HTTP:// over TLS will just silently send everything through TLS (assuming that it can actually negotiate such a connection), thus making passive monitoring of the network less easy.

Ideally, future http2 capable servers will only require a config entry to be set TRUE to make it possible for clients to do OE on them.

HTTPS is the secure protocol

HTTP:// over TLS is not secure. If you want security and privacy, you should use HTTPS. This said, MITMing HTTPS transfers is still a widespread practice in certain network setups…

TCPcrypt

I find this initiative rather interesting. If implemented, it removes the need for all these application level protocols to do anything about opportunistic approaches and it could instead be handled transparently on TCP level! It still has a long way to go though before we will see anything like this fly in real life.

The future will tell

Is this just a fad that will get no adoption and go away or is it the beginning of something that will change how we do protocols in the future? Time will tell. Many harsh words are being exchanged over this topic in many a debate right now…

(I’m trying to stick to “HTTP:// over TLS” here when referring to doing HTTP OE/OK over TLS. This is partly because RFC2818 that describes how to do HTTPS uses the phrase “HTTP over TLS”…)

licensed to get shared

Tuesday, May 6th, 2014

As my http2 presentation is about to get its 16,000th viewer over at Slideshare I just have to take a moment and reflect over that fact.

Sixteen thousand viewers. I’ve uploaded slides there before over the years but no other presentation has gotten even close to this amount of attention even though some of them have been collecting views for years by now.

http2 presentation screenshot

I wrote my http2 explained document largely due to the popularity of my presentation and the stream of questions and curiosity that brought to life. Within just a couple of days, that 27 page document had been downloaded more than 2,000 times and by now over 5000 times. This is almost 7MB of PDF which I believe raises the bar for the ordinary casual browser to not download it without having an interest and intention to at least glance through it. Of course I realize a large portion of said downloads are never really read.

Someone suggested to me (possibly in jest) that I should convert these into ebooks and “charge 1 USD a piece to get some profit out of them”. I really won’t and I would have a struggle to do that. It has been said before but in my case it is indeed true: I stand on the shoulders of giants. I’ve just collected information and written down texts that mostly are ideas, suggestions and conclusions others have already made in various other forums, lists or documents. I wouldn’t feel right charging for that nor depriving anyone the rights and freedoms to create derivatives and continue building on what I’ve done. I’m just the curator and janitor here. Besides, I already have an awesome job at an awesome company that allows me to work full time on open source – every day.

The next phase started thanks to the open license. A friendly volunteer named Vladimir Lettiev showed up and translated the entire document into Russian and now suddenly the reach of the text is vastly expanded into a territory where it previously just couldn’t penetrate. With using people’s native languages, information can really trickle down to a much larger audience. Especially in regions that aren’t very Englishified.

http2 explained

Saturday, April 26th, 2014

http2 front page

I’m hereby offering you all the first version of my document explaining http2, the protocol. It features explanations on the background, basic fundamentals, details on the wire format and something about existing implementations and what’s to expect for the future.

The full PDF currently boasts 27 pages at version 1.0, but I plan to keep up with the http2 development going further and I’m also kind of thinking that I will get at least some user feedback, and I’ll do subsequent updates to improve and extend the document over time. Of course time will tell how good that will work.

The document is edited in libreoffice and that file is available on github, but ODT is really not a format suitable for patches and merges so I hope we can sort out changes with filing issues and sending emails.