
curl user survey 2020 analysis

“I’ve encountered only one curl bug ever”

summary and analysis by Daniel Stenberg

version 1.1 - June 22, 2020

Table of Contents
About curl...3

Survey Background..3
On the Google thing...3

Number of responses..4
Returning respondents?..5
Where are the submissions coming from?..7
What kind of users?..8
Protocols...9
Platforms...11
What Windows versions...13
Building curl...14
Features...15
SSL backends..17
Years of curl use...19
Participating channels...20
How do you “access” libcurl..22
Contributions..24
Other projects...25
Reasons not to contribute to the project...26
How good is the project to handle…..27
Which are the curl project’s best areas?...28
Which are the curl project’s worst areas?...29
If you couldn't use libcurl, what would be your preferred transfer library alternatives?...................30
What alternative download utilities do you normally use?..31
If you miss support for something, tell us what!..32
What feature/bug would you like to see the project REMOVE?...35
Which of these API(s) would you use if they existed?...37
Do you wish to attend the next curl://up meeting/conference?..38
Which question would you like to see in this survey next year?..39
Anything else you think we should know?...40
Summing up the 2020 user survey...47

About curl
Curl is a mature and well established open source project that produces the curl tool and the libcurl
library. We are a small project, with few maintainers, with little commercial backing and yet we’re
over 22 years old and we have gathered help from almost 2,200 contributors through the years. Our
products run in several billion Internet connected devices, applications, tools and services. curl is
one of the world’s most widely used software components. Possibly even the most widely used
component!

See https:// curl.haxx.se for everything not answered in this summary.

Survey Background
We do this user survey annually in an attempt to catch trends, views and longer running changes in
the project, its users and in how curl fits into the wider ecosystem.

We only reach and get responses from a small subset of users who voluntarily decide to fill in the
questionnaire while the vast majority of users and curl developers never get to hear about it and
never get an opportunity to respond. Self-selected respondents to a survey makes the results hard to
interpret and judge. This should make us ask ourselves: is this what our users think, or is it just the
opinions of the subset of users that we happened to reach. We simply have to work with what we
have.

This year, the survey was up 14 days from May 18 to and including May 31. This was the 7th annual
survey as the first one ran in 2014.

The survey was announced on the curl-users and curl-library mailing lists (with one reminder),
numerous times on Daniel’s twitter feed (@bagder) and on Daniel’s blog
(https://daniel.haxx.se/blog). The survey was also announced on the curl web site with an “alert
style” banner on most pages on the site that made it hard to miss for web visitors.

On the Google thing
We use a service run by Google to perform the survey, which leads to us loosing the share of users
who refuse to use services hosted by them. We feel compelled to go with simplicity, no cost and
convenience of the service rather than trying to please everyone. We have not found a compelling
and competitive alternative provider for the survey.

Some respondents have spent a share of their valuable time expanding on “corporate greed” and
how we are stupid and lazy who use this service for the survey in some of the free-text input fields.
To those friends, I would rather urge that you instead focus that energy on helping us to use an
alternative service next year. My guess is that it won’t happen.

https://curl.haxx.se/
https://daniel.haxx.se/blog
https://twitter.com/bagder
https://curl.haxx.se/

Number of responses
We were lucky enough to get submissions from 930 respondents this year, up 27% from 732 last
year. I am very happy with this turnout as this is certainly more than we use to get:

It is unclear what made us reach more users this year or what we can do to reach even more next
year.

2014 2015 2016 2017 2018 2019 2020
0

200

400

600

800

1000

1200

1400

1600

Figure 1: Number of responses

Returning respondents?
(n = 912)

To understand trends or shifting opinions over time, it is helpful if we can ask the same users over
the years and see what they think we improve or worsen. Unfortunately, we seem to keep reaching
out to people who never participated in the survey before. Only about one out of 8 respondents say
they answered the 2019 survey.

The fact that mostly a new set of users answer the survey every year helps us make sure that the
answers we get are not just the same set of people year over year, but instead as we see similar
results year-to-year with ¾ of the respondents replaced we can possibly consider the results to carry
more weight than otherwise.

The upside of this is of course that we are reaching out to even more users and that’s also good.
Figure 2: Answered last year's survey

Where are the submissions coming from?
(n = 914)

The question actually asks “where do you live?” and shows that we have a massive European slant
on this survey. More than 57% live in Europe:

This pattern follows previous years very closely. With Asia reaching a little over 10% as the biggest
change:

I think it shows that open source participation in general is strong in Europe, and that my own
European presence (time zone and otherwise) shows. Looking the top contributors and maintainers
in curl, there’s a strong European focus there as well.

Figure 3: Where does the user live pie chart

Eur
op

e

Nor
th

 A
m

er
ica Asia

Oce
an

ia

Sou
th

 A
m

er
ica

Pre
fe

r n
ot

 to
 te

ll

Afri
ca

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

2018

2019

2020

Figure 4: Where does the user live

What kind of users?
(n = 907)

What are the kinds of users who fill in the survey? Even though we seem to have reach mostly new
users compared to last year, it seems the distribution over various (self-declared) roles were still
roughly the same. 31.5% are “backend developers” (35.8% last year) and 20.3% (15.3) are
sysadmins:

The amount of “others” increased from 9.7% to 11.3% and I think it is perfectly understandable that
so many users think of themselves as not fitting one of the suggested labels. We are all unique.

(This question was introduced in 2019)

Bac
ke

nd
 d

ev
elo

pe
r

Sys
ad

m
in

App
 d

ev
elo

pe
r

W
eb

 d
ev

elo
pe

r

She
ll u

se
r

Pre
fe

r n
ot

 to
 te

ll

cu
rl

de
ve

lop
er

Em
be

dd
ed

 d
ev

elo
pe

r

Oth
er

s

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

2019

2020

Figure 5: Kind of user

Protocols
(n = 920)

This is possibly the number one graph and set of numbers I often come back to over the year, when
new people discover that curl actually supports a particular protocol or question why we still
support one of them.

Two protocols are by far the most popular ones: HTTPS and HTTP.

Four additional protocols are used by 10% or more of all users: FTP, SFTP , FTPS and FILE (in
popularity order). Among these top-6 protocols, we see very little variation between the years. They
seem to be used at roughly the same proportion year by year.

Six protocols can boast 10% or more of the users, and 15 protocols have 5% users - or more. They
are in order: SCP, SMTP, SMTPS, TELNET, IMAP, IMAPS, SMB, GOPHER and LDAP.

This year the least used protocol turns out to be RTSP at 2.3%. Last year’s last position DICT (then
at 1%) climbed to second to last this year with 2.5%.

The order among the top six protocols only changed in one way: SFTP overtook FTPS and is now
the 4th most popular curl protocol.

Table 1: Protocol usage share 2020

Protocol User share 2020 User share 2019

1 HTTPS 97.3% 96.7%

2 HTTP 93.5% 92.8%

3 FTP 30.5% 29.2%

4 SFTP 16.5% 13.5%

5 FTPS 15.1% 16.0%

6 FILE 11.5% 9.9%

7 SCP 8.7% 7.8%

8 SMTP 6.8% 5.5%

9 SMTPS 6.0% 4.5%

10 TELNET 5.5% 4.8%

11 IMAP 5.4% 4.7%

12 SMB 5.3% 3.4%

13 IMAPS 5.3% 4.8%

14 GOPHER 5.2% 2.8%

15 LDAP 5.1% 5.0%

16 TFTP 4.8% 4.0%

17 POP3 4.2% 3.2%

18 LDAPS 4.1% 4.5%

19 POP3S 3.8% 2.8%

20 RTMP 3.2% 1.9%

21 MQTT 3.0% n/a

22 SMBS 3.0% 1.4%

23 RTMPS 2.7% n/a

24 DICT 2.5% 1.0%

25 RTSP 2.3% 2.1%

A general observation on this year’s protocol summary is that almost all protocols increased their
user share! HTTPS reached its highest level in any survey. Only two protocols are used by a less
share of curl users in 2020 than in 2019; FTPS and LDAPS. The top 10 of the greatest “climbers”
this year in user-share compared to last year’s share are:

Table 2: Most growing protocols 2020

Protocol Compared to 2019

1 DICT 250%

2 GOPHER 186%

3 RTMP 168%

4 SMB 156%

5 POP3S 136%

6 SMTPS 133%

7 POP3 131%

8 SMTP 124%

9 SFTP 122%

10 TFTP 120%

MQTT support has been added to curl recently but has not existed for a full year yet and it is still
considered experimental and is not enabled by default. RTMPS was previously mistakenly missing
among the alternatives.

Platforms
(n = 916)

One of curls strongest selling points is its availability on many platforms, and users take advantage
of this. This year we might see a small trend change in that the number of single-platform users
increased and the 2-3 platforms team shrunk a little. It might of course also just be a little single
year blimp in the data. Next year we’ll know.

54.9% of the users in 2020 say they use curl on 2-3 platforms, 28.3% on a single platform and
10.3% on 4-5 platforms. The >5 platforms group is at 6.6%.

The particular platforms that are used in 2020 also roughly matches the ones used previous years.
Here’s a graph showing the ones with 4% or higher user share:

2020201920182017201620152014
0

10

20

30

40

50

60

70

2-3

one

4-5

>5

Figure 6: Number of platforms

2016 2017 2018 2019 2020
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Linux

Windows

macOS

Android

FreeBSD

OpenBSD

iOS

unix

NetBSD

Figure 7: Which platforms are used

The exact platform distribution in 2020:

Table 3: Platform usage

Platform 2020

1 Linux 92.9%

2 Windows 44.8%

3 macOS 38.7%

4 Android 18.2%

5 FreeBSD 13.5%

6 OpenBSD 9.4%

7 iOS 6.2%

8 unix 4.1%

9 NetBSD 4.1%

10 Solaris 3.7%

11 AIX 1.8%

12 VMS 1.5%

13 HPUX 1.3%

14 RTOS 1.2%

15 IRIX 0.9%

The “other” write-in option got a lot of answers, including Illumnos, Haiku, FreeDOS, Junos, WSL,
OpenStep, OpenIndiana, IBM i, VenusOS, MorphOS. Genode, game consoles, Nintendo Switch,
AmigaOS, SCO OpenServer.

What Windows versions
(n = 426)

There are two obvious trends here. Windows 10 (92.0%) is increasing its share as the primary
Windows version people run curl on, and Windows 7 (28.4%) is rapidly decreasing. This graph
below show the versions that got selected by 4% or more of the users. In the third place we got
server 2012/2016 (17.1%) pass Windows 8 (16.0%) this year.

I believe some users this year was a little bit confused about how to answer when they’ve use curl
in WSL on Windows 10, which apparently to a certain amount of users is not plain Windows and
yet not plain Linux either...

Among the still selected but perhaps believed-to-be-extinct versions in the bottom (less than 4%
user share) we see:

Version User share 2020

8 Windows Server 2003 2.6%

9 Windows 2000 2.1%

10 Windows 98 1.6%

11 Windows 95 1.4%

12 Windows CE/Embedded 1.2%

2018 2019 2020
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Windows 10

Windows 7

Windows Server 2012 / 2016

Windows 8

Windows XP

Windows Server 2008

Windows Vista

Building curl
(n = 912)

This question of course here for us to get a clue as to what relative importance and use the different
build options we provide in curl have. Most users (75.7%) who answered this question said “No” –
they don’t build curl at all.

The configure/autotool setup (19.2%) remains how the majority of us who build curl does it, with
cmake lingering at roughly half that share (9.3%). Then there’s another fairly big step down to third
place where 3.5% of the users use our provided MSVC project files, 2.1% on the mingw makefiles
and 1.5% of the users build using the “winbuild” makefiles.

Several persons filled in “gentoo” but I would qualify that as not building curl yourself as you’re
just letting something else build it, and the same goes for “yocto”, “homebrew” and other distro(-
like) builder concepts.

2017 2018 2019 2020
0%

5%

10%

15%

20%

25%

configure

cmake

MSVC project files

winbuild

mingw makefiles

I don’t know

borland makefiles

Features
(n = 775)

HTTP/2 celebrated five years since the RFC was published this spring and it has been racing the
curl feature chart. Again another question to figure out something of a relative feature popularity
among various things curl can do and how they vary over time.

A flurry of colored lines in here, but I think the main take-way is that most features remain at a
fairly stable level, while HTTP/2 is growing, automatic decompression is shrinking and HTTP/3
immediately popped in at a rather high position.

Now, a large amount of sites support HTTP/2 these days and curl does HTTP/2 by default for
HTTPS since a good while back so I believe the HTTP/2 number should probably be close to the
HTTPS share (some people of course still build and use curl without HTTP/2 support built-in), but
this question also reflects people’s awareness (or lack thereof) of what curl features they use.

The exact numbers this year compared to last year, the ones that shrunk this year are marked in red:

Feature 2020 2019

1 HTTP/2 60.3% 55.8

2 TLS client certificates 36.4% 40.3

3 HTTP proxy 33.3% 34.7

4 HTTP automatic decompression 28.4% 30.2

5 TCP keepalive 23.4% 22.5

6 SOCKS proxy 22.2% 18.5

7 the internal libcurl progress meter 20.3% 19.0

8 using libcurl multi-threaded 20.0% 20.0

2015 2016 2017 2018 2019 2020
0

10

20

30

40

50

60

70

HTTP/2 TLS client certificates

HTTP proxy HTTP automatic decompression

TCP keepalive SOCKS proxy

the internal libcurl progress
meter

using libcurl multi-threaded

HTTP/3 Bandwidth rate limiting

UNIX domain sockets curl_multi_socket API

.netrc NTLM auth

DNS-over-HTTPS (DoH) CURLOPT_FAILONERROR

HTTP/0.9 the share interface

Alt-svc Metalink

9 HTTP/3 14.2%

10 Bandwidth rate limiting 14.1% 12.9

11 UNIX domain sockets 11.2% 11.0

12 curl_multi_socket API 11.1% 13.2

13 .netrc 10.1% 8.6

14 NTLM auth 9.9% 10.3

15 DNS-over-HTTPS (DoH) 9.4% 7.3

16 CURLOPT_FAILONERROR 7.5% 6.8

17 HTTP/0.9 5.2% 4.1

18 the share interface 4.0% 4.2

19 Alt-svc 3.1%

20 Metalink 2.2% 1.4

SSL backends
(n = 888)

While 25% of the respondents didn’t know (up from 19.9% last year), that still leaves 75% who
know. This is also a multiple choice question since many users use several different curl builds with
potentially different backends.

Windows ships curl using schannel since two years anow, macOS ships curl using libressl now but
used Secure Transport before when they switched over from OpenSSL. Redhat dropped NSS from
curl for OpenSSL and GnuTLS options are provided on Debian and Ubuntu at least.

In the curl project we’ve dropped support for two TLS libraries and added more over the recent
years. So how does all this play out in the graph? Not too visible. OpenSSL (74%) is shrinking a bit
but otherwise things seem to remain among the respondents.

The drop for all backends in 2018 can probably be explained by us adding the “I don’t know”
answer that year. Previous years those users probably didn’t respond to the question, giving all the
backends a relatively higher share.

With 25% saying “I don’t know” this year and 74% marking OpenSSL, it could mean that 98.7% of
those that do know use curl with OpenSSL… This could then mean that 2020 OpenSSL has a
larger user share than ever before as 2018 (96.7%) and 2019 (97.3%) don’t get that high when
counted as a share of those who do know…

2015 2016 2017 2018 2019 2020
0

10

20

30

40

50

60

70

80

90

100

OpenSSL

I don’t know

GnuTLS

libressl

SecureTransport

schannel

NSS

BoringSSL

mbedTLS

BearSSL

wolfSSL

Mesalink

gskit

Years

U
se

r
sh

ar
e

Adjusted for the I don’t knows, showing the top six backends the three last years:

If we remove the dominant player from the SSL backend graph and the “I don’t knows” answers,
we can zoom in a little bit on the others:

2015 2016 2017 2018 2019 2020
0

2

4

6

8

10

12

14

16

18

20

GnuTLS

schannel

libressl

SecureTransport

NSS

mbedTLS

BoringSSL

wolfSSL

BearSSL

gskit

2018 2019 2020
0

10

20

30

40

50

60

70

80

90

100

OpenSSL

GnuTLS

schannel

libressl

SecureTransport

NSS

Years

U
se

r
sh

ar
e

Years of curl use
n = 910

How well do we attract new users and how well to we retain old users? The data seems to suggest
we’re doing ok. Most notably the 12 years or more category grew a lot this year.

Group User share 2020

One year or less 8.2%

2 – 5 years 22.0%

5 – 8 years 22.4%

8 – 12 years 21.3%

12 or more years 26.0%

2014 2015 2016 2017 2018 2019 2020
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

One year or less 2 – 5 years 5 – 8 years 8 – 12 years 12 or more years

Participating channels
(n = 446)

This question has one of the most notable changes over time. I think we can safely say that the trend
is here that respondents to the curl user survey are way less subscribed to any of the mailing lists
today than what they were a few years back. This trend has clearly been going on for a while.

I complicated the picture a little bit by adding a new option (“@bagder on twitter”), and I counted
the write-ins and summed them up under “@badger on mastodon” and “Daniel’s blog”. There was
no other write-in worth mentioning.

I have some 22,000 followers on twitter and I mentioned this survey numerous times during the
polling period. That probably explains why 45% of the answers said they follow me (that’s still just
203 persons, not even 1% of my followers).

curl and libcurl are of course used everywhere and virtually by everyone. Maybe we should
consider it good that the shares go down as that means we’re succeeding in reaching out to users
outside of our little bubble when asking for user input! The exact numbers were:

Channel 2020 2019

@bagder on twitter 45.5%

github 29.4% 41.1%

Curl-library 13.7% 24.3%

Curl-announce 13.5% 16.3%

stackoverflow 12.6% 19.4%

Curl-users 10.3% 25.9%

#curl IRC 8.1% 13.7%

2014 2015 2016 2017 2018 2019 2020
0%

10%

20%

30%

40%

50%

60%

70%

@bagder on twitter

github

Curl-library

Curl-announce

stackoverflow

Curl-users

#curl IRC

@bagder on Mastodon

Daniel’s blog

@bagder on Mastodon 6.5%

Daniel’s blog 3.8%

How do you “access” libcurl
N = 848

Among the users who answer to the survey, this question seems to be fairly stable. This year’s
number are:

Binding Share of users 2020

curl 79.7%

plain C 34.9%

PHP/CURL 23.8%

pycurl 16.3%

curlpp 6%

Go-curl 4.8%

Ruby 4.7%

www::curl (perl) 4.5%

Java 4.5%

Node-libcurl 3.9%

Rust-curl 3.9%

Lua 3.5%

.NET core 2.5%

Common Lisp 1.7%

R curl 1.5%

Tclcurl 1.3%

PHP/CURL remains the most used non-native binding in a class of its own. Ignoring the bindings
under 4% share this year, the development over the years look like this:

2015 2016 2017 2018 2019 2020
0

5

10

15

20

25

30

35

40

PHP/CURL

pycurl

curlpp

Go-curl

Ruby

www::curl (perl)

Java

Lots of people also chose “other” and wrote in additional suggestions for bindings they use and we
certainly got to see a wide variety there, including: restclient-cpp, libPasCurl, ocurl, hhvm, libgit2,
cpr, Apache mod_md, Net::curl:: perl, pgsql-http, Powershell, PureBasic, Guile-curl, freebasic,
Fortran 2008, qjs, Xojo wrapper and perl anyevent::yacurl!

Contributions
N = 765

curl is open source and exists only thanks to contributors helping out. How have the respondents
helped the project so far?

The number of “haven’t contributed yet” grew from 73.6% last year to 76.1% this year while the
share of bug reports shrunk from 14.5% to 10.7%.

I haven’t contributed yet

I’ve filed bug reports

I’ve sent patches or pull requests

I can’t remember

I’ve responded to mailing lists / forums

I’ve helped out in other ways

I’ve donated money

I spend time in the IRC channel

I run tests or provide infrastructure

I wite documentation

0% 10% 20% 30% 40% 50% 60% 70% 80%

2020 2019

Other projects
N = 908

People who respond in our survey are certainly open source savy and participate in other projects to
a large extent. This year 70.9% of the users said they are “involved” in other open source projects,
and thereby keeping up the general level from previous years.

2014 2015 2016 2017 2018 2019 2020
0

10

20

30

40

50

60

70

80

90

100

Involved Not involved

Reasons not to contribute to the project
N = 850

76% haven’t contributed to curl but yet 70% are involved in other projects, meaning there are a lot
of users answering here that could participate if the conditions are right. How come they haven’t
contributed (more)?

The top reason (60.9%) among the offered answers to this question remains Everything works to my
satisfaction. It has always been the by-far most voted excuse. Reason number two and three are
similarly reasons that basically says the fault is not ours: (#2) I don’t have time (43.5%) and (#3) I
don’t have the energy (19.0%). At position #4 we have a newcomer this year up from #5 last year
Too hard to get started and figure out where to tweak (17.8%).

The full results look like this:

Why not contribute? 2020

1 Everything works to my satisfaction 60.9%

2 I don’t have time 43.5%

3 I don’t have the energy 19.0%

4 Too hard to get started and figure out where to tweak 17.8%

5 Things get fixed fast enough 15.3%

6 I don’t know the programming languages used 14.1%

7 My work/legal reasons prohibit me 4.7%

8 I don’t like or approve of GitHub 4.4%

9 I don’t like or use email 1.7%

10 I can’t deal with the tools 1.6%

11 the project doesn’t want my changes 1.3%

12 I find it hard to work with the curl developers 0.8%

With 17.8% (of the ones who don’t contribute more) thinking it’s hard to know where to start, it
feels like an implied mission for us. But I really need help and feedback here as I’m at loss as to
how to improve this.

More than 160 of the answers contained a free text write-in. They can be divided into a few
categories:

“be worse” (with variations such as “have more bugs” and “break more often”)

“tell us” – various suggestions that we should communicate better when/where/if we need help,
including marking bugs as “good first issues” and providing “a clear roadmap”

“nothing” – basically saying that we do enough but the user’s situation is the limiting factor

the rest – various random suggestions from added protocols, to removing protocols to changing
language etc

How good is the project to handle…
Asked to grade the project in these seven different areas between 1 to 5, this is designed to track if
the project trends in a different direction or perhaps improves or degrades over time, but here again
we get an almost amazingly stable result over time.

The average scores on the different areas ended like this (compared to two previous years):

Area 2020 2019 2018

1 security 4.4 4.52 4.59

2 giving credits 4.27 4.49 4.4

3 information 4.21 4.26 4.29

4 bug reports 4.2 4.43 4.3

5 patch handling 4.2 4.36 4.38

6 newcomers 3.8 4.09 3.93

7 female and minorities 3.45 3.76 3.6

As you can see in this table, all seven areas scored slightly lower this year than last. I believe the
difference to be so small that it’s not significant. We haven’t really done worse and we certainly
have not really done better.

We have work to do and we can and should improve in all areas! Tell us how!

Which are the curl project’s best areas?
N = 787

As a project lead I can’t think of a much better result than year after year having these areas voted
as the best:

1. the quality of the products

2. multi-platform availability

3. support of many protocols

4. documentation

Areas 2020 2019

1 the quality of the products, curl/libcurl 57.7% 56.0%

2 its availability and functionality on many
platforms

55.5% 54.9%

3 the support of many protocols 42.8% 34.8%

4 documentation 37.9% 39.0%

5 the libcurl API 34.3% 32.6%

6 the features of the protocol implementations 25.7% 22.8%

7 standards compliance 25.4% 28.9%

8 support of multiple SSL backends 20.6% 19.6%

9 security 18.2% 20.4%

10 footprint of the library/executable 16.1% 15.4%

11 transfer speeds 10.3% 11.2%

12 project leadership 9.3% 13.0%

13 the user and developer community 7.6% 7.9%

14 bug fix rate 5.1% 8.2%

15 project web site and infrastructure 3.9% 2.7%

16 its build environment/setup 3.4% 2.9%

17 welcoming to new users and contributors 2.9% 3.5%

18 Test suite 2.8% 2.1%

Which are the curl project’s worst areas?
N = 192

Just a quarter of the amount of people who answered about the best areas answered to this.
Interestingly, the highest rated answers to this question remain the same over the years but with the
little detail that since 2018 number three and four (the libcurl API and the web site) changed place
with each other.

Areas 2020

1 documentation 29.7%

2 its build environment/setup 20.3%

3 the libcurl API 18.8%

4 project web site and infrastructure 13.0%

5 welcoming to new users and contributors 9.9%

6 test suite 9.9%

7 footprint of the library/executable 7.8%

8 security 6.8%

9 the support of many protocols 6.8%

10 transfer speeds 6.3%

11 the features of the protocol implementations 6.3%

12 support of multiple SSL backends 5.2%

13 the user and developer community 4.7%

14 bug fix rate 4.7%

15 its availability and functionality on many platforms 3.6%

16 the quality of the products, curl/libcurl 3.6%

17 standards compliance 2.1%

18 project leadership 1.0%

Since we started this annual survey we have enhanced the documentation significantly and I would
say across the board. All documents are better and more thorough now, written in better language.
Still it has remained the number one “worst area” in all surveys since 2014 – while at the same time
remaining the #4 voted “best area” … I think this just highlights that doing documentation is very
hard.

The build environment’s second place I believe is similar. We have improved it over the years and
removed some confusion points and reduced duplications. I suspect this is an area where people are
opinionated and I suspect it is hard to really provide a build environment that a subset won’t dislike.

If you couldn't use libcurl, what would be your
preferred transfer library alternatives?
N = 737

Reality check. What’s the competition? This question keeps showing that there’s no viable multi-
platform option, and especially not one that deals with multiple protocols.

I think this is underscored by the fact that our respondents keep being set on using wget or code
from wget (63.6%) if they can’t use libcurl and on #3, write it yourself (10.3%). On #2 we see a
trend-changer (“native lib in Python, Perl, Go, Rust etc” at 48%, up from 26.7% in 2019) - which
shows that our biggest competitors are the ones written specifically for specific languages. Number
#4 (“windows native” at 10.0%, up from 4.7% last year) seem to indicate that a notable share of
users would be fine to pick a platform-specific solution. Also #6, “macos native“ grew notably to
8.8% from 2.9% last year.

Alternatives 2020 2019

1 wget 63.6% 44.7%

2 native lang lib 48.0% 26.7%

3 homegrown 10.3% 5.7%

4 windows native 10.0% 4.7%

5 macos native 8.8% 2.9%

6 asio 7.2% 4.5%

7 Qt 6.0% 1.9%

8 libsoup 3.0% 1.3%

9 poco 2.7% 1.5%

10 Cpp-netlib 2.6% 0.8%

11 serf 0.9% 0.0%

12 neon 0.8% 0.0%

What alternative download utilities do you normally
use?
N = 817

New question for this year, as I tried to focus the previous question on libcurl alternatives and this
one on curl command line tool alternatives. To no surprise at all, wget is by far the most common
curl alternative “download utility”. And of course it will vary from use case to use case which of the
alternatives you’d use at any given time, but still…

Alternative 2020

1 wget 86.8%

2 nc 25.7%

3 FileZilla 22.6%

4 ftp 21.9%

5 aria2c 14.7%

6 lynx 13.0%

7 httpie 10.5%

8 fetch 9.9%

9 Powershell 9.8%

10 lftp 8.2%

11 wget2 8.1%

12 w3m 7.5%

13 Httrack 3.8%

14 axel 3.3%

15 Pavuk 0.5%

Write-ins for “other” that was entered by more than one user:

Tool Votes

1 scp / sftp 14

2 winscp 4

3 rsync 4

4 elinks 2

5 ncftp 2

6 Chrome 2

7 Firefox 2

If you miss support for something, tell us what!
N = 510

This question is like a desert menu. What of all these tasty option do you think you could enjoy at
any point in the future? I have a strong suspicion that’s exactly how users answer to this question…

This year, I removed a few earlier options as they’re already implemented or are being implemented
just now (HTTP/3, MQTT, parallel transfers with the curl tool) and I added a few new ones that I’ve
already been considering myself and that were suggested in last year’s survey. Surprisingly high
numbers on some of them I think. (“ESNI” has been renamed but I kept the name in the survey as I
believe it is still more widely known under this older name.)

Missing features 2020

1 websockets 45.3%

2 rsync 24.3%

3 bittorrent 22.2%

4 DNS-over-TLS 20.8%

5 DNSSEC (DANE) 18.4%

6 gRPC 16.1%

7 GraphQL 14.9%

8 HSTS 14.5%

9 SMB v2/v3 13.3%

10 SRV records 12.9%

11 Thread-safe curl_global_init 12.5%

12 DNS: URLs 8.0%

13 ESNI 6.9%

14 CoAP 3.3%

We got many great suggestions of what you’ve been missing. Here’s a slightly filtered and cleaned
up list.

1. --json $x <=> -d $x -H "content-type: application/json"

2. A websocket to fifo interface or similar would be cool for cli interaction

3. Ability to get both the non-2XX response status code AND body AND a nonzero exit code.
I believe there was a feature request opened for this and it was closed because it's possible
with extremely advanced bash constructs.

4. AIA & OCSP

5. all features/options in .curlrc should also be environmental variables. example, yum/rpm
(rhel package manager) uses curl in the backend. a weird chicken/egg problem exists when
port 80 is blocked. Need to install the rpm for RHEL to be able to install packages through

satellite (which installs a certificate). But I don't trust the cert yet. And only workaround is
to use .curlrc with "insecure" added. Would be much easier if could use ENV var instead!

6. An option that combines -o and -O; in other words, I want to specify an output directory but
still have curl auto-detect the file name

7. Authenticate with AWS STS

8. Auto detect os proxy settings and use them. You say curl does not do java scripting, but you
can use (within curlib) os implementation for that.

9. AWS S3

10. Bandwidth throttling for HTTP/2

11. better saml token claim and cookie method for new schems

12. build in GPG / usign (openwrt) / signify support!

13. clarification about DOS (FreeDOS) target support

14. classic mac os support is very hard to get working. the support library it is based on is near
impossible to find as the original site for it is gone. managed to build it but then lost those
files again. a rewrite of mac os support that doesn't depend on it would be fantastic.

15. Clearer manpage. It needs some structure

16. CONFIGURABLE COLOR OUTPUT

17. Control over cURL connection pool, ability to stop/restart resolving process (threaded
POSIX)

18. cross-platform asynchronous api, not using poll but curl abstracts away
epoll/kqueue/windows-specific. Select/Poll based is very slow and the other one which
supports epoll or even libuv isn't a great api for new developers.

19. curl_easy_abort()

20. dynamic loading of libraries so a [lib]curl binary can survive libraries being missing.
Particularly true of TLS. Configure/build is fine for individuals/sites, not if one wishes to
have [lib]curl be part of a product which can land on an arbitrary system and to the right
thing (if possible.)

21. Easily embedded for ios apps

22. Easy to understand examples for Curl command line. Lots of examples.

23. EBCDIC-compatible test suite (to be able to distinguish between text and binary data
transfers on test servers)

24. ETag control while resume downloading

25. Expose asynchronous DNS client in API

26. Faster transfer speeds over SFTP (incl. tuning CURLOPT_UPLOAD_BUFFERSIZE from
command line)

27. Gemini

28. Graphs on VRM

29. gRPC and SRV records would be cool.

30. HTTP Content-Disposition header parser/helper for applications

31. integrated json request building, like httpie

32. native c++

33. please change the command layout, it's difficult and not really straightforward. wget does
this better in my opinion but i like curl better :)

34. Persistent socket mode like ssh. Curl cmd line listens on Unix socket for requests from
future cmd line reqs and then sends them via persistent connection. Uses cookies and TLS
session caching too.

35. Rfc7574 “Peer-to-Peer Streaming Peer Protocol (PPSPP)”

36. S3, including multi-part upload

37. SimpleCGI over Unix socket

38. The raw TCP protocol. Would be nice to have libcurl manage the connection, transfer, etc.

39. wire level debug trace

40. would really like a libcurl API to extract the certificate information as binary DER so we
would not need openssl specific code to do it. The API that gives a broken down text
representation is not sufficient for a browser.

These items were mentioned as missing that we already support – with my comments:

41. Compare TLS/SSL certificate with a locally stored one to really verify a host (We support
custom CA cert bundles that enable this.)

42. automatic parsing of filename from headers similar to "wget https://example.com/file.tar.gz"
(Supported since years with -J)

43. support for HTTPS over an HTTPS proxy. (Support already, depending on TLS backend)

44. client controlled easy transfers (e.g. using curl_easy_recv on a handle not marked as
connect only) (I presume this means an pull-driven API like https://github.com/curl/fcurl –
which then obviously already exists)

45. Getting Final-Redirected URL without temp file. Link:
https://stackoverflow.com/a/3077316 (Seems to be a misunderstanding, since it writes to
/dev/null it is not saving a temp file.)

https://stackoverflow.com/a/3077316
https://github.com/curl/fcurl
https://example.com/file.tar.gz

What feature/bug would you like to see the project
REMOVE?
N = 30

Entirely free text. I applied some manual filters and here are the least nonsensical of the
suggestions. Most of them will of course be argued against with this simple phrase: we don’t
deliberately break existing use cases.

• -X

• 'v' and amend 'trace-ascii' to be a bit less similar; '-i' seems pointless with '-D'

• ancient protocols

• Anything that makes the developers life harder :-)

• Automatic use of HTTP POST method if request data is passed. Forgetting the -X flag
should yield and error when passing data.

• CMake

• Complex integration with multiple SSL libraries, especially integrations that expose the
internals of the SSL libraries (such that you have to know which SSL library curl is using to
poke at certain features). I'd happily deal with whatever subset of libraries (and hard
minimum version requirements on those libraries) curl supported, in exchange for
abstracting portably over their features.

• Curl URL globbing prints the URL of each requested page to stdout, this is a problem if I
wanted to read multiple URLs with glob and combine all their output into a pipe. These
headers are mixed into my output. This can be sort of mitigated with --silent, but I didn't
want to actually disable errors, I don't mind error output on stderr.

• everything but HTTP(S)

• FTP

• I don't think you can remove support for large companies who use your product to crush
humans under their overzealous, greedprone feet. You just can't code around human
behaviors, and I don't think you'd be able to fight a battle vs AI... so let's just skip this and
say continue to make it available for all, even those who are despicable. Because that's fair
to all. And fair to all is important.

• IIRC curl does some "goofy" stuff like "re-checking" with select() or poll() before a read.
Maybe this was needed in some weird case, but it seems like there is just a little bit too
much going on between curl_multi_socket_action() and read() :)

• I wouldn't mind if Apple support was removed.

• Old TLS ciphers should need to be explicitly enabled… though I suppose you already do
this with compile-time functionality

• Plethora of build systems. CMake + autotools cover just about everything IMO.

• SMTP

• The progress indicator, it’s only disturbing

• Trimmed and super-portable version of plain-http-only libcurl will he great

Which of these API(s) would you use if they existed?
N = 569

This is like asking a child what kind of candy they would like. I think people over-select these.
Mostly based on the fact that #4 is again at 26% and we’ve tried to offer the fcurl project which
provides pretty much exactly “a read()/write() style API” but the interest has remained very low…

API 2020

1 JSON generation/parsing 52.0%

2 header parsing/extracting 43.9%

3 establishing a websocket connection 41.1%

4 a read()/write() style API for downloading and uploading 26.0%

5 handling of TLS certs/keys in memory 20.7%

6 Server-side support library for HTTP(S) 19.3%

7 HTTP Content-Disposition header parser/helper for applications 17.0%

8 PAC support 8.8%

The write-in suggestions for new APIs included…

• s2n client support (how is that a new API?)

• per-multi bandwidth limitation settings

• Pluggable async DNS resolver

• link header parsing

• WPAD

• Protocol stage callbacks that always get called

• ability to check certificates for revoke (by CRL, OCSP, OCSP stapling)

Do you wish to attend the next curl://up
meeting/conference?
N = 796

This question is perhaps mostly present to make people aware that they can actually attend this
annual event… The share of “No” went up even more this year (the 3rd year we ask the question)
from 60.9% to 64.8%. The “Maybe” share was at 22.5% and among the three different Yes, the one
for Europe got the largest share (7.2%), North America got 2.3% and “independent of location”
3.5%

Which question would you like to see in this survey
next year?
N = 30

30 users filled this in, but some of the answers contained multiple questions. Here’s a filtered list of
suggestions:

• Do you embed curl in a commercial product?

• Do you like the curl:// logo (Yes/No)?

• Have an «Not Applicable» «N/A» or similar choice on each question, to reflect that one
doesn't have an opinion on the question or that it doesn't apply to me.

• How could a more ergonomic command line interface be introduced? (Now that’s a question
that would be hard to answer to in a small and easy way…)

• How do you integrate the curl CLI? E.g., *nix with pipes, pagers, etc

• How do you learn curl: man, help, docs, net?

• how involved are you with curl/community?

• Is our web page intuitive?

• Is the documentation intuitive? Would you recommend curl to others?

• Is it hard to get into the project?

• Is it hard to use the tool? Do you miss any example? Are the tutorials intuitive? Do you miss
any tutorial? In general, how would you rate curl?

• Please indicate the part you think should be needed performance improvement.

• What should be documented better?

• Which GitHub issue would you like to get resolved most?

• Which undefined behavior did you encounter we should fix?

• do you consider yourself part of a minority in the community?

Anything else you think we should know?
N = 148

Okay, yes, this is of course the most open-ended question we could make but it seems users also
took the opportunity to tell us something here. Roughly one in six did.

I’ve included most of the comments here verbatim, sorted alphabetically. Included to show all
members of the curl community the level of love and appreciation we get. It makes me all warm to
read through this.

(lib)curl is already better than any expectations I have! Great work!

(lib)curl is awesome; thanks for working on it!

<3

♥ curl!

As a distro maintainer, I wanted to say that I really appreciate all of the work that you guys do!

Awesome work

awesome work, thank you!!

Bagder is the Bset!

bees are cool

Can't imagine life without CURL. Thank you.

curl är så jävla bra

Curl does everything i expect it to do since 2000 - Thanks a lot!

Curl has incredible quality that other projects should aspire to. The most painful aspects are when it
has to interface to other projects (such as OpenSSL).

Curl is a solid piece of software and i'm glad it exists

cURL is a useful tool; I use it mostly for HTTP/S GET/POST requests and not much else. It saves
me from implementing HTTP.

CURL is amazing! Thanks for your efforts!

Curl is awesome! Only drawback is I sometimes struggle to find correct options to do what I want,
because there are so many! Or – which is worse – I assume something is default and it is not. But I
do not know how to improve it.

Curl is awesome. I always hold the curl project up as one of the best examples of an open source
project for code quality, features, and the community that surrounds it. Also, I haven't ticked HTTP/
3 support as I haven't actually used it yet, but purely from a lack of time to experiment and not a
lack of interest, I look forward to playing with it in the near future!

Curl is great, but borderline kitchen sink. Don’t make it overly complex

curl is great!

curl is great! thanks for your effort!!

curl is indispensable and I sincerely appreciate all of the hard work over many years.

Curl is really great, works like a charm! Thank you

curl is, by far, one of the most amazing libraries I've ever had the privilege of using. Thank you!

curl rocks!

curl works so well I just think of it as a command line tool that doesn't require further thought, like
`ls` or `ssh`. Thank you for years of consistency! It's interesting to see so much evidence of
community, I'll try to pay more attention to it now that I know about it

Don't drop SCO Unix support

Feel good about this. Everybody is coming together to make this a remarkable project.

For end-users like me, your tool is awesome. It's not much but thank you for your work and the ease
of use it provides as long as we know the options… which are well documented anyway. Again,
thank you.

FreeDOS does not mirror newer Curl versions, but that can be immediately fixed by me. However,
I've never rebuilt it and find it hard to verify dependencies (and licenses), and the current
"developer" of Curl for DOS isn't in contact with any of us. I don't even have available the latest
release. I'm not a pro developer and know nothing of networking, but I'm still sympathetic.
However, for such a niche (and "obsolete") platform, it's hard to get even motivated people to work
together.

Generally happy with libcurl.

Great job, just wish it would be easier to use and compile.

Great work

Great work, I use it for debugging http/https services a lot

Great!

Great. Keep going at it !!

Have a nice day :]

Have been using curl since ye olden days of 1999.

Honestly, I had no idea that curl/libcurl could do most of the things it can - reading your
(infrequent) mastodon posts about it is REALLY helpful. Please continue to post there (this is for
Badger, but you know. Everyone at Haxx, and in Horizon (:)

I **love** curl <3

I always confuse "-O" and "-o" when using curl, not to mention their usages are totally opposite in
Wget.

I am not entirely sure how I could do my job without curl.

I don't *need* to download stuff (and I didn't know any of the proposed alternatives that I hadn't
checked), however I use curl a lot as a trusted client to test my server code, especially on H2 where

telnet is not very useful anymore. This is why standards compliance and early availability are its
most important features to me, but I know I don't even represent a tiny fraction of the users.

I haven't yet tried metalink files, but am keen to do so soon. They could be very useful for pulling
(and verifying) large build dependencies from offsite locations.

I just appreciate a tool that works, has always worked, and looks like it always will (i.e. is following
all the new protocols)

I like libcurl

I like stumbling upon Daniel's blog posts from time to time.

I love your project! Appreciate it, and used a lot on my projects! Very simple API

I often worry about the expanding scope of what curl and libcurl handle, but figure that you know
what you are doing and that you are probably basing them on legitimate use-cases for new .

I really enjoy the blog posts with technical detail :)

I still have plenty of videos to watch from Your channel on YouTube which I subscribed to in the
morning and where I can join the mailing list. I think I will find the answer of my latter question via
a simple SE (DuckDuckGo in my case) query ,so discard it, please!

I think I am a bit of an outlier because I am a NetSurf web browser developer and help maintain the
internal scheme fetcher system. Hence the large number of odd operating systems I build for. Hope
the response is useful and thanks for all the hard work.

I think it'd be beneficial to add an option for splitting executables into domain-specific tools, like
curl-mail for email protocols curl-www for http(s), etc. to allow for easier searching of
necessary/desired flags rather than having to skip over flags for SMB, POP3, and so on while
looking for flags to modify HTTP requests.

I use hundreds of command line utilities and this survey made me realize I was just taking curl for
granted, thanks for the great work.

I'm a Pentester, whenever there is an issue connecting to a target we resort back to debugging the
issue with cURL. I couldn't imagine working without it! Seriously!

I'm grateful that you've created such a high-quality library and made it available for any open-
source project to use. Thank you, Daniel, and all the contributors!

I'm just a very grateful user.

I'm not very involved with curl.

I'm really just a dev, using networking libraries wrapping curl and using curl CLI for automated
test. I don't have a really analytic view of curl strength and weaknesses, but I know this project is
fantastic because I would use at least twice the time to develop webservices if I had to handle all
this on my own. And yet my company does not contribute the least bit to OSS, even if I think I'm
far from the only dev to take advantage of such OSS projects. So thank you, really thank you, for
your work and your software.

It would be nice if the test suite runs faster (in parallel?)

It´s a great and valuable Project. Thanks for doing it!

Just keep it goin'. Thanks!

K.I.S.S.

keep being awesome!

Keep it up =)

Keep on rocking

Keep up the awesome work!

Keep up the good work ;-)

keep up the good work in maintaining the great curl tool up to date and useable for mankind.

Keep up the good work!

Keep up the good work!

Keep up the great work

Keep up the great work!

Keep up the great work.

libcurl eats up a lot of memory for each handle

Merchandise (e.g., t-shirt, hoodie, stickers) to support the project! Also keep up the amazing work!

nice work!

Not sure if I contributed much, but wanted to say thanks for all the work you and all the other
contributors have put into this. Hope to see another great year

Please keep on doing what you're doing!

please, make more simple high level API over plain C for cpp.

Postman collections are common in various places. Ignoring personal preference, Postman masks
may errors cURL exposes, so I'm glad to use cURL instead.

Really love using libcurl in projects, keep up the good work.

Thank you for being an awesome project steward.

Thank you for being so vocal about getting paid for your OSS work, especially on such
foundational software. I'll personally contribute soon to try to make up for 15+ years of free usage.
Well deserved.

Thank you for excellent program.

Thank you for making curl. Love you.

Thank you for making developing and life easier.

thank you for making this

Thank you for providing and still supporting this essential utility. I use the cli on a almost daily
basis or as part of another product

Thank you for the cute and power of the curl!

Thank you for your efforts!

Thank you for your work and leadership in this valuable tool. I don't have many use cases for curl,
but when I need to use it, it works. If I don't know how to use it, there's the documentation and the
web to show me how. If I ever lead an open-source project, I will use curl as my model.

Thank you so much for your amazing work!

Thank you!

Thank you!

Thank you.

Thank your for communicating with the community !

Thanks a lot for all of your hard work, cURL is awesome! <3

Thanks Daniel for this amazing tool. I use it almost everyday!!

Thanks for creating maintaining curl!

Thanks for giving the world the gift of curl!

thanks for making curl! I learned from this survey that curl/libcurl have a lot more features than I
thought, I had no idea it supported many ssl backends

Thanks for the fantastic tools

Thanks for this library

Thanks for your job!

Thanks, Daniel.

Thanks!

Thanks!

Thanks!!!

thanx !

That you guys rock!

The attendance could be a (yes/no/maybe - if close to my location). Which is your location?(uuee,
europe, ...). I would like to attend remotely, if possible. "easy" and "multi", why not using generic
terms to describe what the code does? The functionality implemented by "easy" is not easy, but
simple. "easy" is a relative word. You can still make a "most used functionality" for newcomers or
less professional/technical users. Please, the homepage requires a clear distinction between
documentation, tutorials and examples. Documentation would be the API, where each structure and
function should be described, examples would be pieces of code, and tutorials would be long
documents (or videos) which describe what to do step by step. In general I love the project and as
soon as I will get documented enough to make some contributions.

The utility is simply awesome. The best feature I have discovered so far are the cookie support
through that cookie txt file. I find the documentation for libcurl alright, but I think it could maybe
use more examples to fill it out. I am planning on using GTK to create a Postman/Insomnia
alternative because I am tired of Electron :). I think I am gonna forego libsoup, and instead use
libcurl again. I had used it on a senior design project in college, and used libsoup in a recent project,
but if I had to guess libcurl has more features which would mean my application would have more
features :). Thanks for your continued work.

There are many questions I can't answer due to only being a user and unfamiliar with the curl
development process, but the survey itself improved my confidence in the curl development
process. Please keep going.

this is (IMO) the most powerful transfer tool. Many many thanks

This is not directly about curl; but the Firefox network debugger has an option to copy to the
clipboard a curl command that replays a past query. I find this extremely useful to tinker with
requests to badly documented APIs

To me curl and libcurl is a tool so I don't get that deep but there are times when I need it to
download or upload some file. I do a lot with RESTful api's with it on the client side.

us users probably expect too much from libcurl because we do not know an effective way to access
the information on its capabilities. Mailing lists are the best. Email usage has been reduced by
stupid alternatives like WhatsApp, Slack and Discord.

wget is typically more intuitive for downloads. httpie has far prettier output. please make some
noise about all the sites that ask users to curl a script and pipe it to bash as a means of installing
software. this is unhealthy. thanks for curl, it's highly useful.

Would like to have a way to download a list of URIs from a file while maintaining keep-alive and
maximum download speed

Yes! A big THANKS :--)

you are awesome please keep awesoming even harder

You are awesome!

you are doing awesome work. thank you

You are great! Thank you! If my financial situation would be a little better, I would love to support
you that way

You guys are awesome, thanks for doing the survey

You guys are awesome.

You rock !

You're awesome, thank you so much! :)

You're awesome!!

You're doing great work!

Your hard work on libcurl/curl is appreciated!

Your project is really great and I love its sustainability for many years.

Summing up the 2020 user survey
Wow.

There’s a lot of information, detail and feedback in here. Enough to keep us busy for the next year
and I know that I personally will come back to this analysis over the year to relearn what people
think and said about curl this year.

I intend to run the survey again next year, presumably with polished and improved questions. User
feedback is good.

This analysis paper alone has taken me many hours to gather and produce. I hope you like it. If you
find errors or mistakes, let me know. If they’re important or big enough, I will publish updates.

Daniel Stenberg

	About curl
	Survey Background
	On the Google thing

	Number of responses
	Returning respondents?
	Where are the submissions coming from?
	What kind of users?
	Protocols
	Platforms
	What Windows versions
	Building curl
	Features
	SSL backends
	Years of curl use
	Participating channels
	How do you “access” libcurl
	Contributions
	Other projects
	Reasons not to contribute to the project
	How good is the project to handle…
	Which are the curl project’s best areas?
	Which are the curl project’s worst areas?
	If you couldn't use libcurl, what would be your preferred transfer library alternatives?
	What alternative download utilities do you normally use?
	If you miss support for something, tell us what!
	What feature/bug would you like to see the project REMOVE?
	Which of these API(s) would you use if they existed?
	Do you wish to attend the next curl://up meeting/conference?
	Which question would you like to see in this survey next year?
	Anything else you think we should know?
	Summing up the 2020 user survey

