
curl user survey 2021 analysis

“curl is amazing and I've been using it for over 20 years. That's
the longest time I have used anything except the fancy drill I got
when I was 18” (anonymous)

summary and analysis by Daniel Stenberg

version 1.0 - July 5, 2021

About curl
Curl is a mature and well established open source project that produces the curl tool and the libcurl
library. We are a small project, with few maintainers, with little commercial backing and yet we’re
over 23 years old and we have gathered help from over 2,400 contributors through the years. Our
products run in several billion Internet connected devices, applications, tools and services. curl is
one of the world’s most widely used software components. Possibly even the most widely used
component!

See https:// curl.se for everything not answered in this summary.

Survey Background
We do this user survey annually in an attempt to catch trends, views and longer running changes in
the project, its users and in how curl fits into the wider ecosystem.

We only reach and get responses from a small subset of users who voluntarily decide to fill in the
questionnaire while the vast majority of users and curl developers never get to hear about it and
never get an opportunity to respond. Self-selected respondents to a survey makes the results hard to
interpret and judge. This should make us ask ourselves: is this what our users think, or is it just the
opinions of the subset of users that we happened to reach. We simply have to work with what we
have.

This year, the survey was up 14 days from May 24 to and including June 6th. This was the 8th
annual survey as the first one ran in 2014.

The survey was announced on the curl-users and curl-library mailing lists (with one reminder),
numerous times on Daniel’s twitter feed (@bagder) and on Daniel’s blog
(https://daniel.haxx.se/blog). The survey was also announced on the curl web site with an “alert
style” banner on most pages on the site that made it hard to miss for web visitors.

It took a seriously long time for me this time to collect the answers and produce this analysis
document. I think I need to change something to make it less of a hassle and time consuming thing
in the future.

Survey hosted by Google
We use a service run by Google to perform the survey, which leads to us loosing the share of users
who refuse to use services hosted by them. We feel compelled to go with simplicity, no cost and
convenience of the service rather than trying to please everyone. We have not found a compelling
and competitive alternative provider for the survey.

https://daniel.haxx.se/blog
https://twitter.com/bagder
https://curl.haxx.se/
https://curl.haxx.se/

Responses
In order to capture as many opinions and views as possible we’re trying every year to reach out as
widely as possible and of course we want to get more responses than we did last year. It’s not about
the quantity really, but reaching out to those users who really have thoughts and ideas about curl.

In 2021 we managed to yet again gather more responses than the previous year. 1,078 persons
graciously spent some of their time helping us out. This is up 15% from last year’s 930 responses.

Returning
Only 128 respondents (12%) said they filled out the survey last year. Almost as many, 120, couldn’t
remember and 75.5% said they didn’t.

This is almost the exact proportion of answers as we also got last year. This response rate is
interesting primarily when we look at responses that seem to look very similar to previous years as
then that distribution is not based on it being the exact same persons responding.

Continents
1051 respondents filled in what continent they’re from. Like previous years, Europe is over half and
the US about a quarter of the users. I was glad to see that the portion of users from outside Europe
and the US now reached over 20% for the first time in a survey, ending at 21.2%.

2014 2015 2016 2017 2018 2019 2020 2021
0

200

400

600

800

1000

1200

1400

1600

Kind of users?
This distribution is again also very similar to previous years. 30% are backend developers, 19% are
sysadmins and then it trickle down. 13% are app developers and then all the rest are below 10%.

Protocols
(n = 1057)

What protocols are people using? The simple answer is that everyone uses the same protocols to the
same extent they’ve used in previous years as well. HTTPS and HTTP are the protocols curl is
known to speak and they’re used far more than than any other at 96% and 92% respective.

The total amount of supported transfer protocols is officially 26. There are yet again six protocols
that are used by 10% or more of the users. Apart from the already mentioned protocols, position 3 to
6 are held by: FTP (27.5%), SFTP (14.2%), FTPS (13.8%) and FILE (10.3%). These top protocols
are also ranked in the exact same individual order as last year.

Europe 54.8% North America
24.0%

Asia 10.7% South America
4.5%

Oceania 2.4% Prefer not to tell
2.1%

Africa 1.5%

Backend developer

Sysadmin

App developer

Web developer

Shell user

Prefer not to tell

curl developer

Embedded developer

Others

The most recently added protocol (GOPHERS) turned out to be the least used. 16 users said they
used it.

On average, 3.4 protocols were used per person. 6 users claimed they had used all 26 protocols.

The median user uses but two protocols but 43% uses three protocols and more than 10% of users
use 6!

Platforms
(n= 1062)

The distribution among platforms remain roughly the same. This is a multi-choice question so lots
of users selected multiple options here. More than 9 out of 10 users still used curl on Linux.

Platform Share 2021
Linux 90.87%

HTTPS

FTP

FTPS

SCP

SMTP

IMAP

TFTP

LDAP

LDAPS

POP3S

GOPHER

SMBS

RTMPS

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Windows 50.57%
macOS 40.11%
Android 17.33%
FreeBSD 9.23%
iOS 7.72%
OpenBSD 4.61%
Solaris 3.11%
Game console 2.64%
NetBSD 1.98%
Another unix 1.69%
OpenIndiana 1.41%
MS-DOS 1.22%
AIX 1.13%
RTOS 1.04%
VMS 0.85%
IBM i 0.75%
AmigaOS 0.75%
HPUX 0.56%
IRIX 0.56%

There’s possibly a trend looking over multiple years that Windows has grown as a curl user
platform and macOS has shrunken a little. For the first time Windows reached over 50% (up from
44.8% last year). Both FreeBSD and OpenBSD lost over 4% percentage points. Combined with iOS
climbing to its highest level yet, 7.7%, iOS is now a bigger curl platform than OpenBSD.

The top-4 curl users platforms over the last 6 years.

2016 2017 2018 2019 2020 2021
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Linux

Windows

macOS

Android

According to this question, the number of used platforms among users is distributed like this

That distribution is interesting to compare with how people answer how many platforms then use.
25% specified they use one platform, while the previous question says 80% uses two or more...

This too, closely matches previous years’ distributions.

Windows versions
(n = 557)

It’s useful to keep track of what Windows versions users are using curl with. This guides the
development team on how to do with deprecation of support for old versions etc.

Windows 10 was the only version that grew its share, up from 92.0% last year, which I can only
interpret as something good. The really ancient Windows versions are now very small usage wise.

The complete summary of this year’s distribution:

Version 2021
Windows 10 95.0%
Windows 7 18.5%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2-3 57%

One 25%

4-5 10%

>5 7.5%

Windows Server 2012 / 2016 13.3%
Windows 8 9.3%
Windows XP 5.2%
Windows Server 2008 5.0%
Windows Vista 2.9%
Windows Server 2003 2.2%
Windows 2000 1.1%
Windows CE/Embedded 0.7%
Windows Server 2019 0.7%
Windows 98 0.4%
Windows 95 0.4%

Building curl
(n = 1049)

The idea behind this question is of course to get an idea which of the build methods that are used or
not used. New answer option for this year was “yes using my distro” because in previous years a lot
of people wrote that in the text field as people in general think of installing packages with distros
that build the packages as building curl. I’m not going to debate that, but instead just conclude that a
lot of people selected that option.

66.9% of the respondents answered a plain no, down from 75% last year. Meaning a third of the
audience build curl.

Configure remains the clear leader even after a huge drop this year and cmake’s growth over the last
few years ended. The MSVC project files at 11.5% is the only other option above 10%.

(This graph above is the distribution of the alternatives when “no” has been deducted.)

Features
(n = 891)

Internet trends come and go, and so does what features are popular and used. This question tries to
spot such trends among our use base.

What do we learn here this year? We added two features: HTTPS proxy and HSTS and both of them
are well-used features. It also turns out that HTTP/2 and HTTP/3 usage grew. The quickest
growing features right now are HTTP/3, DoH and unix domain sockets.

In the table below I’ve highlighted the features that had a 15% or more increase or shrunk with
more than 15%.

2017 2018 2019 2020 2021
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

configure

using my distro

cmake

MSVC project files

I don’t know

winbuild

mingw makefiles

borland makefiles

Feature % share of respondents Change since 2020

HTTP/2 62.7 3.90%

TLS client certificates 34.3 -5.65%

HTTP proxy 30.4 -8.66%

HTTP automatic decompression 27.9 -1.60%

TCP keepalive 19.6 -16.06%

HTTP/3 18.9 32.78%

HTTPS proxy 17.8 N/A

the internal libcurl progress
meter

17.8 -12.09%

using libcurl multi-threaded 17.8 -10.77%

SOCKS proxy 17.6 -20.63%

UNIX domain sockets 13.1 17.24%

Bandwidth rate limiting 11.1 -21.20%

HSTS 11.1 N/A

DNS-over-HTTPS (DoH) 11.1 18.20%

.netrc 9.8 -3.32%

curl_multi_socket API 9.2 -17.09%

NTLM auth 8.9 -10.44%

CURLOPT_FAILONERROR 6.8 -8.72%

HTTP/0.9 5.1 -2.87%

Alt-svc 3.4 8.61%

the share interface 2.9 -27.05%

Metalink 1.2 -43.88%

This Metalink feature is being removed in 2021 due to security concerns. The very low usage
helped us make that decision.

TLS backends
(n = 1004)

We reached a new record amount of people saying “I don’t know”, at 27% of all answers. To me
this is a rather good sign. It means the particular flavor has not been important enough to make a
dent in that person’s mind, which could mean that curl’s TLS abstraction layer has worked there and
there hasn’t been any significant difference noticed that could be deduced to the TLS flavour.

This year I added two options to the answers: AmiSSL and rustls. The former one was wrongly not
included before and the latter is a new backend we support. How do these fare? Let’s take a look at
user share with the “I don’t knows” removed.

OpenSSL remains the undisputed leader. Among the most used options, GnuTLS fell significantly
while both Secure Transport and Schannel picked up a lot of users. Secure Transport so much that it
is now the third most used TLS backend!

Among the lesser used ones, wolfSSL and gskit bumped their shares a lot. NSS took the biggest hit
this year as fewer and fewer curl users are using it.

TLS 2021 2020 Change year-to-year

OpenSSL 97.4 98.7 -1.3%

GnuTLS 16.0 20.3 -21.1%

Secure Transport 15.6 12.7 23.2%

schannel 14.3 11.7 21.9%

libressl 12.7 14.4 -11.8%

BoringSSL 5.0 4.7 7.1%

mbedTLS 4.4 3.7 17.9%

NSS 4.1 5.6 -26.8%

wolfSSL 2.6 1.6 62.5%

rustls 2 0.0%

BearSSL 1.5 0.0 0.0%

AmiSSL 1.5 0.0%

gskit 0.8 0.3 200.0%

Mesalink 0.4 0.4 0.0%

Years of curl use
(n = 1044)

As the project grows older, it isn’t unexpected that we get more and more users who have used it for
a very long time. Some of you used it already in the 1990s and can thus boast over twenty years of
curl. If the share of newcomers would start to shrink significantly we can probably detect that the
younglings are abandoning it – but that doesn’t seem to happen. The share of reasonably fresh users
seem to remain at a stable level in 2021 as it has for the last few years. 25.1% say 12 years or more,
8.5% say one year or less.

The distribution of the respondents over the last years look like this:

One year or less

2 – 5 years

5 – 8 years

8 – 12 years

12 or more years

2014 2015 2016 2017 2018 2019 2020 2021
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

One year or less 2 – 5 years 5 – 8 years 8 – 12 years 12 or more years

Participating channels
(n = 708)

Where do people learn about new curl things and news and information around the project?

This is a question with an interesting change in answers over time so I’m including a graph below
showing all eight years we’ve asked users. Daniel’s Twitter account and personal blog have
become the dominant channels for curl related info. The blog is at 44.6% up from last years
3.8%!

The distribution for 2021

Channel 2021

@bagder on twitter 55.7%

Daniel’s blog 44.6%

Curl repository on github 23.0%

Curl-users mailing list 9.2%

Curl-library mailing list 8.5%

stackoverflow 7.3%

#curl IRC 7.2%

@bagder on Mastodon 6.1%

Curl-announce mailing list 5.1%

2014 2015 2016 2017 2018 2019 2020 2021
0%

10%

20%

30%

40%

50%

60%

70%

@bagder on twitter

Daniel’s blog

github

Curl-users

Curl-library

stackoverflow

#curl IRC

@bagder on Mastodon

Curl-announce

How do you “access” libcurl
(n = 947)

The distribution remains roughly the same. 75% marked the curl command line tool, but among the
different ways to access the libcurl API, they were distributed like this, roughly keeping up the
stable trend we’ve seen over the last few years.

Contributions
(n = 904)

What’s the ways people contribute to the project? This question of course also serve as a reminder
to people that we’re open source and we rely on help from everyone.

This year doesn’t look much different than previous years, even if I now added an option for “I have
curl stickers on prominent places”…

Help 2021 share

I haven’t contributed yet 74.2%

I’ve filed bug reports 9.5%

I’ve sent patches or pull requests 8.0%

I can’t remember 5.3%

I’ve helped out in other ways 4.9%

curl stickers on prominent places 4.9%

plain C

PHP/CURL

pycurl

curlpp

www::curl (perl)

Java

Node-libcurl

Go-curl

.NET core

Rust-curl

Ruby

Lua

R curl

Common Lisp

cpr

FreeBasic

ocurl

Tclcurl

Clarion

0 5 10 15 20 25 30 35

I’ve responded to mailing lists / forums 4.6%

I’ve donated money 4.0%

I spend time in the IRC channel 2.2%

I run tests or provide infrastructure 1.2%

I wite documentation 1.2%

Other projects
(n = 1035)

There’s a slow trend of people answering to this survey being less involved in other projects, but
there’s still more than two thirds (67.3%) this year involved in other open source projects.

Reasons not to contribute to the project
(n = 994)

The “everything works to my satisfaction” remains the top “excuse” why people are not
contributing to the curl project, down to the all-time low 52.8%. The “I don’t have time” remains at
a high 42.4% level and the #3 and #4 reasons are also growing this year. Here’s the full table

Why not contribute? Share 2021 Change year-to-year

everything works to my satisfaction 52.8 -13.3%

I don’t have time 42.4 -2.6%

I don’t have the energy 21.5 13.2%

I don’t know the programming languages used 14.9 5.6%

Too hard to get started and figure out where to
tweak

14.5 -18.6%

things get fixed fast enough 14.3 -6.6%

my work/legal reasons prohibit me 4.6 -1.5%

I don’t like or approve of github 2.7 -38.2%

I can’t deal with the tools 2.7 70.0%

I don’t like or use email 2.0 18.2%

2014 2015 2016 2017 2018 2019 2020 2021
0

10

20

30

40

50

60

70

80

90

100

Involved Not involved

I find it hard to work with the curl developers 1.5 88.8%

the project doesn’t want my changes 1.1 -14.6%

There are some very large deltas since 2021 if we look at the bottom of the table, but then every
answer there gets very few check-marks which means one or two extra makes a very large delta.

Here’s the top-4 explanation development shown over time:

What could the curl project do/change to get (more)
contributions from you?
(n = 206)

This was a free-text field which makes it hard both to analyze and to present. About one out of five
respondents wrote something.

The answers can generally be divided into these eight different categories:

1. I can’t think of anything to add to the project

2. I don’t have the skills to contribute (the code is too hard/big/wrong language)

3. “add bugs for me to fix”

4. “invent a time machine”

5. Mark issues as good starting-points

6. I didn’t know curl need help

7. Use another language

8. Random other stuff that isn’t related to contributions

2014 2015 2016 2017 2018 2019 2020 2021
0

10

20

30

40

50

60

70

80

90

everything works to my satisfaction

I don’t have time

I don’t have the energy

I don’t know the programming languages used

Category 5: “mark issues as good starting-points” is interesting. I often read how this is suggested
as a way to help newcomers into projects. I just don’t know how to do it. How do we determine
what’s easy? How do we prevent experienced users from just fixing them immediately (because
they are easy) ?

Category 6: “I didn’t know curl need help” is similarly tricky. Several answers urged us to ask for
help when we need it and that we should better point out where help is required. Unfortunately they
mostly seem to miss the point that in a project like curl we always need help and assistance since
there are always a range of bugs to fix and quirks to remove. We also provide (huge) lists with
known bugs and TODO items. What else can we do?

How good is the project to handle…
Asked to grade the project in these seven different areas between 1 to 5, this is designed to track if
the project trends in a different direction or perhaps improves or degrades over time. Sgain we get
an almost amazingly stable result over time, increasing ever so slightly over time.

A pessimist’s view of this would be that all our qualities are in the same relative order after all this
time so even if we might’ve improved slightly over time, there’s no big change. And the ones that
were our lowest ranked qualities in 2014 are still our lowest ranked qualities…

The general upward trend is best visible when the average of all scores are drawn as a single plot
with a corresponding trend line. This year’s average of 4.3 is the highest one measured so far.

2014 2015 2016 2017 2018 2019 2020 2021
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Handling security-related issues Attribution and giving credits

Patches and pull-requests Bug reports

Information about what's going on Helping newcomers to the project

Female contributors and other minorities

2014 2015 2016 2017 2018 2019 2020 2021
3.50

3.60

3.70

3.80

3.90

4.00

4.10

4.20

4.30

4.40

Which are the curl project’s best and worst areas?
(n = 877 for best, 226 for worst)

These two questions list 18 different “areas” in the project and asks the user to select the 3 best and
the 3 worst areas. More than three times as many could select best areas as would select worst areas.

The available options to select from were:

• The quality of the products, curl/libcurl
• Its availability and functionality on many platforms
• The support of many protocols
• Documentation
• The libcurl API
• Standards compliance
• The features of the protocol implementations
• Support of multiple SSL backends
• Security
• Footprint of the library/executable
• Project leadership
• Transfer speeds
• The user and developer community
• Bug fix rate
• Project web site and infrastructure
• Welcoming to new users and contributors
• Test suite
• Its build environment/setup

The top-5 voted best areas in the project were the same as recent years with a similar distribution:

the quality of the products, curl/libcurl 57.0%

its availability and functionality on many
platforms

55.6%

the support of many protocols 39.8%

documentation 36.6%

the libcurl API 32.0%

When asked to pick the “worst” areas, people also pick the ones they’ve picked recent years:

documentation 28.3%

its build environment/setup 18.1%

the libcurl API 19.0%

project web site and infrastructure 11.5%

welcoming to new users and contributors 13.3%

It is of course interesting to see “documentation” and the API as usual being featured in both top-
lists.

If you couldn't use libcurl, what would be your
preferred transfer library alternatives?
(n = 821)

Time for a check on the competition. What would people use instead of libcurl?

When asking the question, I’m curious to find out which libraries that could be considered the main
competitors. I’m not convinced everyone who answers the question think of it that way since “wget
or code from wget” keeps being the top response year after year and yet I don’t think most users
actually opt for that when they go with something else than libcurl…

The second-most answer seems more likely then: “a native lib in Perl, Python, Java, Go, Rust, etc”
which also climbs somewhat over the years. The 3rd most popular answer “windows native” climbs
up to 10% of the respondents.

I think next year we should probably split up the “native lib in..” option into separate ones for the
different languages.

Which other download utilities do you normally use?
(n = 957)

No surprises here. The top alternatives are wget, scp/sftp and rsync, used by more than half of curl
users. (But note that wget2 is a separate option and that shows it certainly has not “taken off” out
there). The alternatives that received more than 5% of the answers were:

wget 74.8%

scp/sftp 61.5%

rsync 56.3%

FileZilla 24.7%

2014 2015 2016 2017 2018 2019 2020 2021
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

wget

native lang lib

windows native

nc 24.0%

ftp 21.4%

winscp 18.8%

httpie 11.3%

fetch 11.3%

Powershell 10.4%

lynx 10.3%

aria2c 10.1%

lftp 7.3%

wget2 7.3%

w3m 5.0%

If you miss support for something, tell us what!
(n = 797)

There’s something to be said about asking people what they want in a casual survey. It’s very easy
to just click a bunch of buttons for everything that sounds even just remotely cool and be done with
it.

This is a question for which we’ve of course subsequently have removed answers from over the
year that we’ve implemented. We also try to add new options for things that have popped up and are
being discussed in the community.

This year I added “JSON support” and it immediately become the top answer to this question as
almost half the population thought this was a good idea. Now, exactly how such support would look
like was not detailed and in recent discussions when I’ve tried to poll the community for what
things we could do to curl to improve JSON support (without stepping on jq’s toes) I’ve mostly
been told that curl doesn’t need more JSON adaptions and that there already are surrounding helper
tools that do the JSON part very well. Mixed messages…

JSON 43.54%

websockets 41.03%

DNS-over-TLS 22.58%

rsync 21.83%

gRPC 20.83%

bittorrent 19.70%

GraphQL 16.19%

DNSSEC (DANE) 14.93%

SRV records 12.42%

SMB v2/v3 11.67%

Auto-detect proxy 11.17%

Gemini 10.29%

OCSP 9.16%

DNS: URLs 8.78%

ECH (ex ESNI) 7.90%

AIA (download certs) 7.65%

CoAP 3.01%

The free-text form that allows users to fill in their missing features is a gold-mine of ideas and
various wishes – without about a quarter of them asking for something we already support... Some
of my favorites this year:

• Per-multi (or per-share) bandwidth limiting

• test-suite running in parallel

• A callback-style socket abstraction for the underlain connection. The way lib curl handle
sockets currently is a no-go for windows IOCP based thread pools and etc.

• integration with gpg-agent to allow for encrypted .netrc

• CURLOPT_WILDCARDMATCH should support SFTP

• support for automatic duplicate file renaming.

• Supporting with C++ STL without any dependencies by Boost, Qt or other non-stl libs.

• add a --follow-redirects in curl as an alias for –location

• A standardized C++ API that utilizes the added options for abstractions

• Multi-threaded sftp downloads like lftp

• Browser emulation so a web server can’t distinguish curl from a normal browser

• a 'raw' flat/minimal c build

What feature/bug would you like to see the project
remove?
(n = 47)

Maybe not a very useful question. This typically triggers a few users to mention protocols they
don’t use and “bloat”. I think I can remove this question next year without it making anything
worse.

Which of these API(s) would you use if they existed?
(n = 608)

Again a question that is easy to just pick answers from like a menu that we should interpret casually
and not too strict. The read/write API experiment has been provided in the fcurl repository for many
years now without getting much user traction and yet 37% this year says that they “would use it”.
The JSON option was new this year and a whopping 55.8% said they’d use a JSON API if libcurl
provided one...

JSON generation/parsing 55.8%

header parsing/extracting 43.6%

establishing a websocket connection 37.3%

a read()/write() style API for downloading and
uploading

28.6%

Server-side support library for HTTP(S) 22.0%

HTTP Content-Disposition header parser/helper
for applications

15.6%

Pluggable async DNS resolver 11.8%

Per-multi bandwidth limitation settings 8.4%

PAC support 7.1%

Attend curl-up?
(n = 915)

Asked to see how the interest is distributed, and perhaps where the largest pool of “yes” is located.
Yes in Europe got 11%, Yes in North America 4.5% and 2.5% said yes to any location. This
suggests that we might continue hosting the main curl up event in Europe for a while more.

	About curl
	Survey Background
	Survey hosted by Google

	Responses
	Returning
	Continents
	Kind of users?

	Protocols
	Platforms
	Windows versions
	Building curl
	Features
	TLS backends

	Years of curl use
	Participating channels
	How do you “access” libcurl
	Contributions
	Other projects
	Reasons not to contribute to the project
	What could the curl project do/change to get (more) contributions from you?

	How good is the project to handle…
	Which are the curl project’s best and worst areas?
	If you couldn't use libcurl, what would be your preferred transfer library alternatives?
	Which other download utilities do you normally use?
	If you miss support for something, tell us what!
	What feature/bug would you like to see the project remove?
	Which of these API(s) would you use if they existed?
	Attend curl-up?

