
curl user survey 2018 analysis

“Yed i like it”

summary and analysis by Daniel Stenberg

version 1.1, Jun 12, 2018

About curl
Curl is an open source project that produces the curl tool and the libcurl library. We are a small
project, with few maintainers, with little commercial backing and yet we’re over 20 years old and
we have gathered help from well over 1700 named contributors through the years. Our products run
in a vast amount of Internet connected devices, tools and services. curl is one of the world’s most
widely used software components.

See https:// curl.haxx.se for everything not answered in this summary.

Survey Background
We do this user survey annually in an attempt to catch trends and longer running changes in the
project, its users and in how curl fits into the wider ecosystem. As usual, we only reach and get
responses from a small subset of users who voluntarily decide to fill in the questionnaire and the
vast majority of users and curl developers never get to hear about it and never get an opportunity to
respond. Self-selected respondents to a survey makes the results hard to interpret and judge.

This should make us ask ourselves: is this what our users think, or is it just the opinions of the
subset of users that we happened to reach. We simply have to work with what we have.

This year, the survey was up 14 days from May 15 to and including May 28.

The survey was announced on the curl-users and curl-library mailing lists (with one reminder),
numerous times on Daniel’s twitter feed (@bagder) and on Daniel’s blog
(https://daniel.haxx.se/blog). The survey was also announced widely on the curl web site with an
“alert style” banner on most pages on the site that made it hard to miss for visitors.

We used a service run by Google to perform the survey, which typically also leads to us loosing the
small share of users who refuse to use services hosted by them. We feel compelled to go with
simplicity and convenience of the service rather than trying to please everyone.

Number of responses
This year showed a 30% increase in number of survey participants compared to last year, climbing
from 513 to 670 responses. Still far off from the record year 2015 when a total of 1475 entries were
collected.

https://curl.haxx.se/
https://daniel.haxx.se/blog
https://twitter.com/bagder
https://curl.haxx.se/

This year we did however also add some additional questions about the individual answering, to
help us understand the responses a little better.

Returning respondents?
If everyone who answered this year’s survey also answered last year’s, would that help us draw
better conclusions on how we’ve changed or not? Maybe, so we asked the question…

so only 12.5% are certain return respondents. 84 persons out of 670. It makes me curious why the
other 429 persons who responded last year didn’t do it this year...

However, trends and changes in the project should however be visible, get felt and be experienced
by people independently of their participation or not in this survey last year so maybe it doesn’t
affect the outcome of all this very much. It is also a good thing that we manage to reach out and get
feedback and opinions from new people instead of just recycling the same old.

2014 2015 2016 2017 2018
0

200

400

600

800

1000

1200

1400

1600

From where?
Participation in open source projects is something of an expression of wealth. We know the western
culture is way over-represented in general but in order to better understand the answers we get in
the survey I added this new question this year: “in which continent do you live?”

I decided to stick to a continent level since I wanted just a rough estimate and at the some time not
give people the sense that I’m trying to tell them personal details about themselves.

Additionally, I wanted to get
this data as input to as how
successful we are in absorbing
answers from many different
corners of the world. To my
disappointment, we were even
worse at this than I expected.
I’m then mostly looking at the
number of North Americans,
which I originally expected to
be roughly on par with the
number of Europeans but
ended just a third of them.

I don’t have any good explanation for why almost two thirds of the respondents are European. I
have not gotten the sense that curl has a particular euro-angle among users.

What protocols
n = 667

Possibly the most referred to data in this survey year over year is the distribution of protocol usage
by our users. As usual, HTTP and HTTPS are the by far most popular ones as virtually everyone
used those, but not even a third of the users used the third most popular protocol FTP (31.9%).

curl is a multi-protocol tool and library. A lot of users use more than a few of the protocols, and this
is how the distribution looks, counting number of different protocols used with curl. The leading
user claims 19 protocols. The average is at 3.12 protocols while the median says 2.

Africa 0.9%

Asia 8.2%

Europe 62%

North America 21%

Oceania 3.0%

Prefer not tell 2.4%

South America 2.4%

2 32 62 92 12
2

15
2

18
2

21
2

24
2

27
2

30
2

33
2

36
2

39
2

42
2

45
2

48
2

51
2

54
2

57
2

60
2

63
2

66
2

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

20 Protocol 2018
HTTP 94.5%
HTTPS 94.3%
FTP 31.9%
FTPS 13.5%
SFTP 13.3%
FILE 9.3%
SCP 7.6%
SMTP 6.6%
SMTPS 4.8%
IMAPS 4.3%
TELNET 4.3%
IMAP 4.0%
TFTP 4.0%
LDAPS 3.7%
SMB 3.4%
LDAP 3.3%
POP3 2.5%
POP3S 2.2%
RTMP 1.9%
RTSP 1.3%
GOPHER 0.9%
SMBS 0.6%
DICT 0.4%

The protocol distribution is very similar to previous years - the ones in the very bottom might
change individual order from year to year but since they’re in the sub 10 respondents that’s just
noise.

Does the protocol distribution change over the years? Can we see a trend where we have winners
and losers? No, not even that…

Looking at the percentage of use among the top-7 most used protocols in curl over the last five
years, the lines are almost straight… The top seven are the only protocols supported by curl to ever
have reached over a 10% claimed usage ratio.

2014 2015 2016 2017 2018
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

HTTP

HTTPS

FTP

SFTP

FTPS

FILE

SCP

SFTP and FTPS keep being almost glued to each other!

Do you use curl/libcurl on multiple platforms?
n = 666

Just one in four users are
using curl on a single
platform. All over next to
identical distribution as
previous years.

20182017201620152014
0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

>5
4-5
one
2-3

You use curl/libcurl on which platforms?
n = 668

One of the secrets behind curl’s success is its availability on many platforms. But do average users
stick to using it on one platform or on many? The average user does it on 2.43 platforms, the
median on 2 and the most prolific respondent listed 11 different platform running curl.

Number of platforms used to run curl

This question celebrates it’s third year in the survey this year, but slightly modified compared to last
year so not everything is easily comparable. Now we ask for OpenBSD, FreeBSD and NetBSD
specifically instead of just BSD and Solaris was also added.

This year confirms the small trend we saw last year when the share of Windows users grew. It grew
even more this year and even overtook macOS as the second biggest curl platform, and macOS
itself took a notable dive down.

The top-8 platform distribution 2018

Platform User share Change from 2017

1 Linux 90.9% -2.8

2 Windows 49.6% +4.5

3 macOS 44.0% -6.2

4 Android 16.0% -0.8

5 FreeBSD 12.0%

6 iOS 6.4% -0.1

7 OpenBSD 5.8%

8 Solaris 4.9%

2 28 54 80 10
6

13
2

15
8

18
4

21
0

23
6

26
2

28
8

31
4

34
0

36
6

39
2

41
8

44
4

47
0

49
6

52
2

54
8

57
4

60
0

62
6

65
2

0

2

4

6

8

10

12

The rest of the selected platforms are all at 3% or lower share. VMS being the last in the list at 0.3%
but then it seems not a single user selected IRIX this year, down from 0.4% of the users 2017!

Platform usage share changes over recent years. To be able to compare with previous years, this
graph has all the BSDs accumulated for the 2018 number. Not a lot of changes...

If you use curl on Windows, which Windows versions?
N = 333

(Interestingly, 333 persons filled in this question while 331 answered Windows on the previous
one.)

With basically half the user population on Windows, it is good to get an understanding how the
distribution looks like over the many different versions of Windows that are out there.

I was happy to see that at least a vast majority of the users are on Windows 10 (83.2%) or Windows
7 (53.2%), the only versions with more than half of the users, and there was not a single user who
checked 95 or 98.

One interesting observation I think is Windows XP which clocked in at 9.6%. Interesting because it
is often referred to as “deprecated” and “unsupported”. Clearly there are still some XP installations
out there running curl…

2016 2017 2018
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Linux

macOS

Windows

BSD

Amount of Windows users who stated they’re using these windows versions:

Do you typically build curl/libcurl yourself?
n = 657

This is my attempt to get a feel for what build system that are most used and thus most important to
existing users. Of course 70% who answered this question said they don’t build themselves (up
from 66.9% last year), so I’ll focus on views of the remaining 30. The bars below are as a share
among those who didn’t answer “no”.

This year the question listed all build options we provide, and it also became a multi-choice answer
so it isn’t easily comparable to the results last year where users could only pick one answer.

Share of users who use what build system to build curl/libcurl

98

95

CE/Embedded

ME

2000

Server 2003

Vista

Server 2008

XP

Server 2012 / 2016

8

7

10

0.00%
10.00%

20.00%
30.00%

40.00%
50.00%

60.00%
70.00%

80.00%
90.00%

co
nf

igu
re

cm
ak

e

so
m

et
hin

g
els

e

M
SVC p

ro
jec

t f
ile

s

winb
ui
ld

m
ing

w m
ak

ef
ile

s

I d
on

’t
kn

ow

bo
rla

nd
 m

ak
ef

ile
s

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

The zero users of the Borland makefiles will make me move on removing them from the source tree
in the name of simplification. (The subject has already been brought to the mailing list and a PR has
been filed.)

Tell us which libcurl features you use?
n = 504

This is a personal favorite. With the answers here we can really see what’s important to libcurl users
and what features that we could start discussing deprecating in a future.

This year I added HTTP/0.9 to the answers since we’ve been discussing maybe dropping support
for it. A 3.8% usage share, I’d say is not insignificant. Most of the features remain at a similar usage
share as previous years as you can see here...

2015 2016 2017 2018
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

HTTP/2

TLS client certificates

HTTP automatic
decompression

TCP keepalive

using libcurl multi-threaded

HTTP pipelining

SOCKS proxy

the internal libcurl progress
meter

Bandwidth rate limiting

curl_multi_socket API

NTLM auth

UNIX domain sockets

.netrc

CURLOPT_FAILONERROR

the share interface

CURLOPT_DNS_USE_GLOBA
L_CACHE

HTTP/0.9

Obvious trends: HTTP/2 is really still booming. Now used by almost half of the users population.
That’s a 3x times increase on three years and an almost 16% increase since 2017.

The downward trend for automatic compression is hard to explain, especially since libcurl during
the last year also got support for brotli which allows for even better compression ratios possible
making the speed gain higher.

The usual caveats go out for the client certificate number which continues to be much higher than I
suspect is “real” (and continues to grow too!) as I continue to suspect that a share of users can’t
keep all the different certificates apart.

Personally I think the share interface is a little bit of a hidden gem in the libcurl API family and I
consider it unfortunate that it doesn’t get more traction than 5.2% now.

Which SSL backends do you typically use?
n = 638

There was a new answer in this year’s version of the question and no less than 18.3% of the users
selected it: “I don’t know”. I have no problems with that as I actually think most users don’t need to
know what TLS library their curl build is using. However, I think this skewed the numbers a little
since previous years the “I don’t know” users would just have skipped the question entirely instead.
I think this may be the biggest explanation to why several TLS backends show a falling trend.

This is a multiple-choice question (since many users run many different versions of curl) the sum is
way more than 100%.

2018 shows that the last year was no anomaly. The OpenSSL share has decreased. It was always the
by far most used backend and it certainly still is – without any real competition – but this is the first
time where a fifth of the respondents don’t use an OpenSSL powered curl. Note that in the graph,

HTTP/2

TLS client certificates

HTTP proxy

HTTP automatic decompression

TCP keepalive

using libcurl multi-threaded

HTTP pipelining

SOCKS proxy

the internal libcurl progress meter

Bandwidth rate limiting

curl_multi_socket API

NTLM auth

UNIX domain sockets

.netrc

CURLOPT_FAILONERROR

the share interface

CURLOPT_DNS_USE_GLOBAL_CACHE

HTTP/0.9

0 5 10 15 20 25 30 35 40 45 50

the OpenSSL line uses the right-side Y-axis while all the others are on the left-side Y-axis.
Done so to make the lesser used libraries’ graphs easier to view together in the same graph.

SecureTransport’s decreased usage could be attributed to the fact that Apple dropped it from their
curl build in favor of libressl, but that makes it harder to explain why libressl also took a significant
dive! Redhat has switched their curl builds away on Fedora from NSS to OpenSSL and that can
explain the NSS fall. Schannel is on the rise for the third year in a row. While Microsoft now ships a
native curl in Windows 10 built against schannel, that is still such relative new development so I
think that’s not actually the full explanation… I think it simple has taken time for people to switch
over and discover that this backend still works pretty well while removing an external rather large
dependency.

BoringSSL keeps climbing this year and is at 2.8% share larger than it has ever been among curl
users. This year mbedTLS clocks in at the exact same share as BoringSSL. WolfSSL gets a
significant bump as it 1.1% now.

At 0.5% the axTLS user share is a dying breed as this TLS backend is now being deprecated and
deemed unsuitable for use with curl (for quality purposes).

2015 2016 2017 2018
0

2

4

6

8

10

12

14

16

18

20

0

10

20

30

40

50

60

70

80

90

100

TLS backend user share

Over four years

OpenSSL

I don’t know

GnuTLS

schannel

libressl

SecureTransport

NSS

mbedTLS

BoringSSL

WolfSSL

axTLS

gskit

Years

U
se

r
sh

ar
e

O
pe

nS
S

L
sh

ar
e

How many years have you been using curl?
n = 663

Having an old user base could be a sign that our products are trusted and can be relied upon for a
long time. But also having a decent share of newer users is a sign that we still are relevant for
newcomers into internet transfer tools and not only a choice for an older generation of users. I think
it might signal good health.

One in every 5 curl users have used it for twelve years or more. Pretty impressive I think!

The “curl age” distribution is remarkably stable over time. This year I added a new upper slot
among the answers. Previously the oldest used to be “8 years or more”, but now that become “8 -12
years” and there’s a new “12 years or more” answer.

So, with that in mind, the green field from previous years is now split up in two, but those two
fields together only grew a little bit compared to the single green in 2017. The one year or less
category when up from 6.3% to 7.8% in this last survey.

Channels you participate in
n = 247

First we should note that only 37% of the population answered this question that already is very
hard to draw any conclusions from. In general less and less of the respondents check alternatives so
they’re all falling year to year. Except for the magic “other”, which could be a signal that we’re
getting activities done more distributed in more areas as we grow older.

Stackoverflow was a newly added alternative this year.

2014 2015 2016 2017 2018
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

12 or more years

8 – 12 years

5 – 8 years

2 – 5 years

One year or less

How do you access libcurl?
n = 596

“access” in the question means how you run libcurl. From the command line tool or what
binding/API.

Clearly the command line tool and the C API are the two primary drivers, with the PHP and the
Python bindings being the two dominant bindings.

This year ‘tclcurl’ was removed from the selection of answers (and not a single user wrote it in).
Newcomers are the rust, go and node bindings and interestingly they were all selected by 3.4% of
the respondents.

My favorite write-in for this question was “forth”!

The graph shows the percentage of users who selected which...

2014 2015 2016 2017 2018
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Curl-users

Curl-library

Curl-announce

other

github

stackoverflow

#curl IRC

R curl

Common Lisp

.NET core

Lua

Go-curl

Rust-curl

Node-libcurl

Java

www::curl (perl)

Ruby

curlpp

pycurl

PHP/CURL

plain C

curl

0 10 20 30 40 50 60 70 80

Where do you live?
n = 667

This question has never been asked before. I was a bit surprised about the strong European
dominance among the respondents. I expected North America to be roughly on par but instead it
ended just a third of the Europeans. Africa was probably unsurprisingly the continent with the
lowest number of respondents at 0.9%.

Did you answer this survey last year?
n = 666

Another new question. Meant to serve as a helper to judge what changes in the survey means as
compared to previous years. Turns out the vast majority of respondents did not participate last year
and more than a tenth can’t remember if they did!

Europe 62%
North America 21%
Asia 8.2%
Oceania 3%
South America 2.4%
Prefer not to tell 1.9%
Africa 0.9%

What are the primary reasons you haven't contributed
or don't contribute more to the project?
n = 612

I want this question to guide us what we can do better to make sure everyone who wants to can
contribute. It could possibly also work as a guide in how we improve or get worse on these matters
over time. In reality it seems the distribution of the answers are roughly the same, year after year.
“everything works to my satisfaction” is at 58% still the top choice while the “I don’t have time”
answer is at 42.5% on an all time high.

“Three children” might be my favorite write-in here.

What could the curl project do/change to get (more)
contributions from you?
n = 79

The companion question to the previous one. This is entirely free text so I find it encouraging that
almost 12% filled in something. To present the answers sensibly, I’m summarizing them here to my
best ability.

1. Enhance documentation
Example response: A well written beginners guide. Who just studied Python basics. Don't know
where to start.

2014 2015 2016 2017 2018
0

10

20

30

40

50

60

70

80

90

everything works to my satisfaction I don’t have time

things get fixed fast enough I don’t have the energy

Too hard to get started and figure
out where to tweak

I don’t know the programming
languages used

my work/legal reasons prohibit me I can’t deal with the tools

I find it hard to work with the curl
developers

I don’t like or approve of github

the project doesn’t want my changes I don’t like or use email

I spend a lot of time on writing docs and improving docs. Not too long ago we introduced the “help
us” web page as an intro to the project and how you can start helping out:
https://curl.haxx.se/docs/help-us.html

I would be thrilled to get feedback on how that document works and what we need to do with it to
make it better.

2. mark “low hanging fruit”
Example response: advertise low hanging fruit and how to help

I know a few other projects do this, but I honestly can’t see how we can make this work. The easy
bugs are typically the ones that get fixed almost instantly. To make such a system work, we would
need to deliberately keep bugs open just to allow newcomers to have easy bugs to fix. Keeping bugs
open on purpose doesn’t sound like a winning concept for me.

We already mark bugs with “help needed”. Those are bugs that we have confirmed are bugs but are
currently not able to work on in the near term. Excellent candidates for someone who wants to help
out.

3. Accept PRs faster (even in feature freeze periods)
Example response: Accept a large patch for review even if it's not that part of the development cycle

We do review PRs even during the feature freeze period even if we don’t merge them until the
feature window opens again. We’ve chosen to work like this simply because we don’t have people
enough and infrastructure setup to do a lot of parallel developing in multiple branches so we stick to
a single one.

And besides, we have the feature freeze periods to encourage people to help out with fixing and
merging bugs and by insisting that we instead focus on future new features, we put less emphasis on
the bug fixing part and that’s not really a good long-term model either!

When we get more maintainers involved in the daily development, we can reconsider adding a next-
release branch for such merges.

3. Add extra hours to the day
Example response: Globally introduce 72 hour days.

There were a lot of variations of this one. Humorous ways of saying that they don’t have time. I
fully respect that, but unfortunately that’s not something we in the curl project have figured out how
to fix!

4. Leave some bugs for us!
Example response: Be less awesome

A lot of responses stated that there aren’t any bugs (affecting them) to fix and that we’re fixing the
few that do affect users fast enough.

https://curl.haxx.se/docs/help-us.html

5. Nothing!
Twelve something users said there’s nothing we can do. Kind of futile way of looking at the
dilemma, but I suppose it is actually another way of saying that the problem is not in our end but in
lack of time or ability etc.

6. Be better!
Answers that didn’t really fit one of the five categories above. I’ve collected them here verbatim
and without a lot of comments. Here’s what respondents suggest we should do in the project to
make it easier for people to contribute. It is hard to understand how adding new features etc could
make it easier, but hey, I’m not judging here...

• build system backwards compatibility

• Decrease bug reproduction hassles (e.g. setting up a server, configuring SSL backends...)

• DNS resolutions using SRV records

• do you have webshop to buy something? We need invoice for donating.

• Drop support for Windows < 2000 and/or GCC < 2.95 as there's no way to test this and no
documentation available anymore.

• I could run tests if there is a simple way to run them, e.g. via cron.

• Preferable language and community

• Re-implement curl in Rust

• Sell me curl merch that contributes to development

• smaller, more focused libraries are better than behemoths. Curl is too big.

• Stuff gets unreasonably denied, like -f variant that outputs response error status text and
body.

• Support DANE (DNSSEC based TLSA records)

• To get more docs on PHP cURL

• Try to drop off support for old platforms and less used features.

• Yed i like it

That last suggestion made me giggle. Sure it is certainly a typo of some kind but I still can’t figure
out what it means…

How good is the project to handle…
The respondents grade the areas between 1 (worst) to 5 (best). Here’s a chance to check how we
have changed in these areas over time. What are the trends?

The individual categories people rated are in security, giving credit, handle patches, deal with bug
reports, information, help newcomers and minorities.

This graph below is the average score in each category and how they have changed over the last
five years. The order of the categories in the legend shows in top-to-bottom how they range against
each other in 2018. We’re rated best in handling security issues, we’re worst in handling minorities.

The scores are not changing much over the years but small improvements the last two years on
several of the questions can be noted.

The average scores 2018 were:

security 4.59

credit 4.4

patches 4.38

bug reports 4.30

information 4.29

newcomers 3.93

minorities 3.6

2014 2015 2016 2017 2018
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

security

credit

patches

bug reports

information

newcomers

minorities

Which are the curl project’s best areas?
n = 569

What are the best areas of curl? The primary reasons people use and like curl perhaps? Similar to
many other questions, this list doesn’t change a lot either. Here are them all shown in a graph
compared to last years’ results. The two top reasons changed places, and there was some minor
changes but the general view remains.

It is quite obvious that our quality and multi-platform abilities are our special sauce, even though
multi-platform shrunk from 61.3% to 57.5% this time around. 58.3% checked “quality” as best area.

In the bottom end we can see that very few thinks our test suite or ability to welcome new users and
contributors are our best areas.

welcoming to new users and contributors

test suite

its build environment/setup

project web site and infrastructure

bug fix rate

the user and developer community

transfer speeds

project leadership

footprint of the library/executable

support of multiple SSL backends

the features of the protocol implementations

standards compliance

the libcurl API

the support of many protocols

documentation

its availability and functionality on many platforms

the quality of the products, curl/libcurl

2017 2018

Which are the curl project’s worst areas?
n = 161

Much fewer answered to this than the best areas question. This is pretty much the inverse of the
previous question. As usual, the top-voted “worst area” is documentation, which also as usual is the
3rd most voted best area, showing the complexity and how hard it is to get documentation right and
to satisfy users. The libcurl API is voted the 5th best area and at the same time the 3rd worst..

Perhaps the biggest changes from last year are the most interesting bits in this. Project web site and
infrastructure went from 19.6% to 11.20% worst, transfer speeds from 10.5% to 5.0%, features from
9.1% to a mere 3.1%, standards compliance from 4.9% to 1.9% and multiple SSL from 7.0% to
1.9%!

Exactly what goes through people’s minds this year as compared to last year is hard to tell here, as
certainly we haven’t changed much in terms of “multiple SSL support” or “standards compliance”
etc. Either the perception changed or this is the result of us having reached a different subset of
users than last year…

project leadership

support of multiple SSL backends

standards compliance

bug fix rate

the features of the protocol implementations

the quality of the products, curl/libcurl

the user and developer community

its availability and functionality on many platforms

transfer speeds

security

the support of many protocols

footprint of the library/executable

test suite

project web site and infrastructure

welcoming to new users and contributors

the libcurl API

its build environment/setup

documentation

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

2017

2018

If you couldn't use libcurl, what would be your
preferred alternative?
n = 551

This question got a few new alternatives this year, driven by the write-in fields from last year. The
results shown in the graph below are all the answers.

Comparing this year to last, with all answers that got 2% of the answers or more:

asio, Qt networking and POCO were not options last year so they of course stand alone. Asio
obviously being the biggest competitor that isn’t “a native language lib”, but still it only got 5.6% of
the votes. Wget or “code from wget” is by a large margin still what the majority of people think is
the alternative (40.3%, while 30.3% selected native language library).

If you miss support for something, tell us what!
n = 368

This question used to ask what protocols that were missing but it was changed to a more generic
question this year. I also removed SPDY from the answers in spite of it getting 14.9% of the votes
last year. SPDY is just yesterday’s protocol… Added alternatives this year include DNS-over-
HTTPS, curl tool parallel transfers, DNSSEC and more. It turns out several of the newcomers got
quite high interest.

Websockets remain high in demand even if lower than last year, but after that comes two new
mentions. DNS-over-HTTPS even already has early code landed in the libcurl-using app doh that
I’ve written as a starting-point to get this done for libcurl: https://github.com/curl/doh

wge
t

na
tiv

e
lan

g
lib

as
io

ho
m

eg
ro

wn Qt

m
ac

os
 n

at
ive

wind
ow

s
na

tiv
e

po
co

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

2018 2017

https://github.com/curl/doh

Strikingly, QUIC got less votes this year than last even though it is now much closer to reality;
down from 27% to 20.7%.

Write-ins on this question included:

• SNMP

• Sieve (RFC 5804)

• IPFS

• REST API

• dat support

• more complete SMB implementation

• Multiple/dynamic SSL backends in *one* libcurl

• I want to be able to get response headers for example like: -w %{h:last-modified}

• UDP proxy for onward QUIC through a forward proxy, wait for spec ;)

• HSTS

• test-suite running in parallel

• SFTP (we already support SFTP!)

• recursive downloads

Closely related to these answers is the next question which asked

If you miss support for something, tell us what!
n = 51

This being an entire free form text field, I had to edit the list somewhat. I’ve added comments on a
bunch of them below.

web
so

ck
et

s

DNS-o
ve

r-H
TTPS

cu
rl

to
ol

pa
ra

lle
l t

ra
ns

fe
rs

bit
to

rre
nt

QUIC
rs

yn
c

DNSSEC (D
ANE)

SRV re
co

rd
s

DNS: U
RLs

CO
AP

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2018

2017

HTTP Digest Authentication with sha256

Support for RFC 7616 was already added in curl 7.57.0!

Running the test suite on windows

Full ack on this. I would really like to see thins happen. Unfortunately we don’t have a lot of active
contributors and maintainers on Windows so problems and features that are specific to that platform
aren’t always getting the attention they need. We will greatly appreciate help and assistance in
driving “tests on Windows” forward.

better cmake projects

We just lack people writing the improvements. We know the cmake build setup is lacking in some
regards but we don’t have enough developers actually working on improving this

Strongly typed variants of curl_easy_setopt

This has been discussed on and off, but hasn’t happened yet. One of the reasons perhaps because we
haven’t been able to figure out the most suitable way this should be done so that all existing
functionality can be expressed using a strongly typed version of the API. If you have ideas or
suggestions on how you think the API could work in a future, please step forward and help us out!

I would like a library initialization function (similar to curl_global_init)
that lets me specify which protocols libcurl should handle and disables
all others.

That sounds exactly like CURLOPT_PROTOCOLS which has been around since 7.19.4!

Our biggest problem is that we haven't quite figured out how we can
distribute a pre-built curl/libcurl binary if we don't know what libraries
do/don't exist on customer machines.

This sounds like a wider problem than just a libcurl problem but I understand that this is probably
not easy. If you have specific ideas on how we in curl can help make things easier or better, please
tell us!

Better API for integrating into an existing event loop.

In my eyes, our existing APIs are pretty good at this, even if the event-based API can be a bit quirky
but then I mostly blame that on the nature of events which generally make things harder than
otherwise. Here again: if you have specific ideas of what’s bad and how it could be made better or
easier, please let us know!

Aggregated bandwidth rate limiting for a multi

That would be cool to offer, but is pretty complicated.

Function to clean up idle connections in a multi

This sounds related to the PR Max Dymond works on that can keep connections alive:
https://github.com/curl/curl/pull/1641

https://github.com/curl/curl/pull/1641

It would take some similar function like that to discover that an unused connection in the
connection pool is actually over its idle limit and close it down. This feature is also already
mentioned in the TODO.

Simple header retrieval makes it easy to use in scripts without cut awk
grep mess

If we would extend curl’s -w option to be able to show the contents of specific headers, that would
indeed allow for that in easy ways. I’m cautiously in favor of this idea, especially if implemented
purely in curl and not particularly in libcurl.

recursive download

Wow. That’s a massive ask that I would be hard to persuade to agree to. The amount of parsing and
logic to add for that to become usable is not insignificant while at the same time there exists several
good tools already that support this.

Read requests from an har file (http archive) and replay them like a
browser in terms of dependencies and parallelism.

Replaying requests from a har file sounds like an interesting idea that I’d very much like to explore
further, but I believe the “do it like a browser” is way harder and more complicated than it may
sound.

Too easy and commonplace to invisibly disable security (-k,
VERIFYPEER/HOST). Would be useful to be able to enforce secure
protocols with security features enabled.

We’ve discussed adding support for an environment variable that if set renders -k useless. This
would allow users who want stricter curl invokes to set the environment variable and then no scripts
that runs curl could get away with -k uses (see CURL_REFUSE_CLEARTEXT in the TODO).
Here’s room for you to step up and help us implement this!

Colored terminal output for curl binary in verbose mode to better
distinguish between headers, content and connection info.

Lovely. Bold header support has been merged and will be present in curl 7.61.0.

Compilation as C++ code: Add casts for all malloc()/calloc() calls. The
reason is that we compile the curl code for .NET.

No. As long as libcurl is C code, we will stick to write C code. There’s no good reason for anyone to
build libcurl pretending it is C++. C++ and C are not easy interchangeable. That would just add
piles of work for us with very little, if any, benefits.

brotli (de)compression support for testing servers (enabled by –
compressed)

Done! This has been supported since 7.57.0.

More tooling around client certs - e.g. a default cert if the server
accepts the signing CA

This is very vague. “more tooling” that would do what? It is also a bit complicated since curl/libcurl
can be built with so many different TLS libraries so any tool we’d build at the same time of curl
would then have that or those TLS libraries to work with. Not unsolvable, but that complicates life.

Express your algorithms in the highest-level language possible.
Compile that DSL to machine code.

Yikes. That’s not doable.

Client cert handling on the cmdline can be a bit cumbersome...I almost
want a list of services in config file to apply the keys to. Think ssh
config.

I’m sure client cert handling leaves a lot of room for improvement. Even though lots of users in this
survey claim to use it, we get very few bug reports and barely any patches for it. Users of this
features should gather and discuss how it can be improved and then we can work on adding features
to make sure it gets better.

A curl_multi implementation around poll() instead of select()

Sure, that would even be a fairly easy thing to do. Feel free to submit a pull request! An application
can even today avoid select() with the multi interface by using the multi_socket API.

wget's -N flag, because -{z,o}"fname" fname --next… is too verbose

Adding new options that just work as aliases for one or more other options? I’m not convinced
that’s a great idea.

Dynamic backend loading like SDL_DYNAMIC_API in SDL2

What backends? And why would they need to be loaded dynamically? Loading files dynamically
(by ourselves instead of letting the run-time linker do it) opens up a whole can of worms that we
need a very strong reason to take on and I’ve not seen such strong motivations being presented for
this case. Please explain!

more environment variables.

For what?

HTTP authentication via callback so URL and headers can be analyzed
and send appropriate authentication details

Yes! We’ve had early pieces of code that did this and we’ve discussed it several times in the past but
we’ve never seen this concept getting made into reality. I’d love to see someone with a clear use
case step forward and help us design this API/setup so that we get it decently right.

A UI like httpie would be awesome

I’ve not been impressed by httpie’s UI the little I’ve used it. It is much more limited that curl’s, plus
curl has to consider way more functionality and protocols. But I’m also open for suggestions and
patches that improve curl’s “UI” and command line handling. Please explain how you envision this
would work!

Extended test suite for easy out-of-the-box testing on EBCDIC
machines (without need to patch tests)

I’d love that. We’re ridiculously short of contributors on such platforms though. What’s needed to
get this to work? Companies/people on EBCDIC systems need to step forward and ideally also start
running automated tests for us to make sure the build remains functional. It is very hard to maintain
non-ASCII functionality for people on ASCII platforms.

More examples of the APIs

We have 103 stand-alone examples and every API man page (more than 400) contains a smaller
example snippet. But sure, more examples would be good. Documentation is never good enough,
can always improve and we’re always ready to receive more examples!

Documentation is generally great but could use examples showing how
to configure the library and its handles for very high throughput.

libcurl should not need any particular configuring to perform well. It should always do that.

better rtmp, imap and smtp support. it is difficult to use all of those.

Agreed. They’re three protocols with just rudimentary support added. It’s a cycle: not so many users
of them, so not so many work on improving them, making not so many new users are attracted to
start using them...

Multiple/dynamic SSL backends in *one* libcurl

Done. Supported since 7.56.0.

websockets

Seems to be fairly widely requested. Here too I would like someone with a use case to step forward
and work with us on how you’d like to see libcurl work for this.

http/2 multiplexing

Since libcurl has supported this for many years already (since 7.44.0) I can only assume this refers
to the command line tool which does not support it yet. I want to add parallel transfer support to
curl in the future by switching it to use the multi interface internally, and once we do that it should
also be fairly easy to enable HTTP/2 multiplexing for the tool.

up to date Android binaries

I would be interested in taking up a wider discussion in the curl community about hosting packages/
binaries for various platforms under the curl web site “umbrella”. This to help with the trust issue

and the problem that we now often refer users to third party sites and organizations that we really
can’t know always host and provide sensible and fine packages. I don’t even know if it is possible
to host and provide Android binaries in such a way.

automatic proxy configuration on Windows

I would not object to it. Has this slightly problem that on Windows we seem to have many users but
fewer who actually contribute with code and help fixing bugs.

Nice to have (for testing other software): custom I/O functions to
read/write, i.e. abstraction around a file descriptor

That’s just code to add. A little bit of work to make it happen for all the various TLS and SSH
backends...

C++ api (classes)

We’re not C++ hackers in the curl project. I think leaving binding work for the people who work
with the particular language is much better. The fact that no C++ binding has managed to attract
many users and become an active and vivid open source project has to me just been a hint that
there’s not that much demand for such a C++ binding.

Protocol-specific wrappers around curl_easy, with good, secure default
options set

libcurl should set secure default options already!

Webdav

This is quite a heavy protocol with to add. I would like to hear a more detailed motivation as to why
curl/libcurl needs to do this and how an implementation should be made to work to make it useful to
applications. Like with many other things: someone with an actual use case should probably step
forward.

What feature/bug would you like to see the project
REMOVE?
n = 25

Another free text field and a mere 25 persons could think of something to remove…

protocols that don't really get used

Protocols that don’t get used don’t get many bug reports == not a particular maintenance burden.
This suggestion appeared in several different version, some of them naming specific protocols:
RTMP, RTSP, LDAP, SMTP, POP3, IMAP and DICT.

I’m open to discuss how to deprecate specific protocols, but it is important to understand that just
because you don’t use and appreciate the particular protocols, you also typically don’t suffer from
them much, and for those who actually use them, removing them can become a problem.

The -k flag should go

(in favor of the longer more obvious flag or a flag named for the danger (something like ‘--disable-
certificate-security’ to cover all protocols) Too many instructions whack in -k for various (bad)
reasons and it should be more of a red flag to those who don’t know curl well)

We can just break a bazillion scripts out there, even with good intentions. I think the
CURL_REFUSE_CLEARTEXT suggestion as laid out in the TODO is a better approach.

Synchronous API

If you look in the code, the “burden” of providing this is in the neighborhood of just a few hundred
lines of code and there are hundreds of not thousands of application using it. Even the curl tool
does. Removing this API would not help us much nor will it help any users.

RTMP, but librtmp is dead. if absolutely need to keep, find a way to use
ffmpeg's implementation.

This was news to me. If librtmp truly is “dead” then I think it puts this protocol (implementation) as
head of the line among the protocols to consider to drop support for.

NSS

We’re still counting almost 4% of our users on NSS so I think that would be premature. Also, as
long as there are people maintaining the NSS library, the curl code that uses it and it doesn’t cause
us any trouble, I see very little reason to cut code out.

HTTP/2

Almost half the user population uses HTTP/2. Enough said.

HTTP/0.9 support

I wouldn’t be totally against this. I would at the very least be happy to put the support behind an
option that disables it by default to users as most users are probably not even aware that curl happily
will speak HTTP/0.9.

HTTP Pipelining (too many shaky tests)

I’ve been wanting to do this for a very long time, but every year in this survey a shocking amount of
people claim they use it. HTTP/2 and multiplexing is already here and delivers what pipelining
never could with even more and better functionality.

CURLOPT_SSL_VERIFYHOST == 1

“When the verify value is 1, curl_easy_setopt will return an error and the option value will not be
changed”. What else could you possibly want? That it would transparently be used and treated as a
2?

curl.h redefining integer types per platform instead of relying on
stdint.h

We could indeed bring up the C standard to support for debate. stdint.h comes with C99 and we still
put the part at C89. But I don’t think we have many problems with our integer types, do we?

Crappy SSL backends

We’ve just marked axTLS as unsuitable for use. Any other candidate?

Advertising size reduction options in the build instructions. It makes
desktop developers unnecessarily cripple the library because they can.

Deliberately removing docs for things just prevent people from using them is not a method I will
approve of. Educating the users in the effects of using said options I think is a much better way.
People will always be able to shoot themselves in the foot when given powerful tools. That’s a side-
effect of offering flexibility.

Which of these API(s) would you use if they existed?
n = 395

We have features and ideas in our TODO file and we discuss new things every now and then. Here’s
a question to “feel” the interest in our user population for some of the ideas we have and might
implement.

JSON generation and parsing is still very hot apparently, although the discussion about this very
subject on the curl-users mailing list a while ago didn’t at all show the same level of interest.

I’ve said it before but I’ll say it again: I presented a version of read()/write() API in a separate
repository (https://github.com/bagder/fcurl) two years ago but the interest has been basically non-
existing. This serves an indication for me that people are eager to be positive in this question, but it
might not actually reflect what they want to use or help out to make reality!

… and it is not because the interest changes over time, because it’s almost magically stable year
over year:

setting up threading mutexes

Content-Disposition: parser

Server-side support for HTTP

a read()/write() style API

TLS certs/keys in memory

URI handling

JSON generating/parsing

0% 10% 20% 30% 40% 50% 60%

Should curl join an umbrella project?
n = 443

Without any further motivations or explanations, this question has kept getting a firm “no” through
all the years we’ve asked. The no share was at 65% this year.

I think however if the discussion opens up and we try to explains some reasons or motivations why
we would go either way, I think this question could get a significantly different answer. Right now, I
don’t think many users see any particular reason or upside with going into an umbrella organization,
but only risk some downsides.

The “no” share in the survey over the last four years:

setting up multithreaded mutexes in an agnostic way

Server-side support library for HTTP(S)

a read()/write() style API for downloading and uploading

handling of TLS certs/keys in memory

URI handling (parsing/splitting)

JSON generation/parsing

0% 10% 20% 30% 40% 50% 60% 70%

2016

2017

2018

2015 2016 2017 2018
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Do you wish to attend the next curl://up
meeting/conference?
n = 583

We know we got roughly 3 times as many respondents from Europe as from North America so it’s
not terribly surprising that we got more than double the rate for Europe (13.6%) than North America
(5.5%) in this question! Still, by pure people numbers that’s 79 Europeans and 32 North Americans
who wishes to attend. I love the enthusiasm!

Should libcurl get rewritten in another language?
n = 601

I inserted this question as a new one this year mostly because this is a popular suggestion to through
at me. In particular in times when we release security advisories. There’s no effort or real intention
to actually rewrite curl into anything, but I figured it would be fun to see how widespread the notion
that this is a good idea is.

43.8% abstained and want the ones “in the know” to decide. 43.3% actively said “no”. Among the
remaining 12.9% of the users C++ and rust both got basically the same amount: C++ 5,8% and Rust
5.2%. Go only 1.7% while “using whatever” got 0.3%.

(Personally I can not see the point in rewriting curl in C++ since it is a language with basically the
same pitfalls and challenges as C has but with even larger footguns.)

What should "curl 8.0" be?
n = 486

Another one of these bikeshed questions. Easy to have an opinion about.

The largest piece in the pie says “just another release” while the almost as big piece says “get rid of
old cruft”. I’m not entirely sure how we will use this information, but I think it at least tells us that
there’s no clear opinion on what a version 8 should be and that there are at least two widely popular
options that possibly can be somewhat combined. That might then be what version 8 will become...

Which question would you like to see in this survey
next year?
n = 43

This is a slightly filtered and edited list:

• Would you like to have ONE binary like a go binary is. The reason behind this question is to
get rid of the runtime dependencies

• Which protocol do you think needs the most compliance improvements

• Which internal bits of libcurl would you like to see exposed in the API?

• Which architectural improvements would you like to see in the API?

• Where do you think the curl api is unintuitive?

• What is your favorite curl feature?

• What is the most unusual consumer product you have found curl within? My Toshiba TV!

• what are you using curl for (in my case I primarily use it to validate interoperability of
haproxy's HTTP/2 implementation and to help reproduce bugs).

• Using space for 8.0 thoughts. Resource intensive, but a total refresh with long support tail
7.x would be sweet.

• to what extent do you understand curl options (i.e. power users, vs just running it in a test
suite)? 2. how do you use curl - where's the value to your organization?

• The "How many years have you been using curl?" doesn't have an option for 1 -2 years
(which is where I fall).

• Should new features be written in another language?

• Question on desired sources of security-related information used (e.g. OS trust stores,
application-provided, embedded SCT, provided SCT, CRLs, OCSP, other sources).

• Probe differences in professional vs personal interactions. In my case, I am on the job, so I
can't go much beyond what the company needs, and sometimes very long stretches of time
elapse between [lib]curl work - my feet are in other fires. Info about organization
worked/volunteered for? (number of employees/developers...) Number of other developers
using [lib]curl. Number of projects/products using [lib]curl. The "Best Area" question's
limitation of 5 answers was severely limiting. The project has MANY positives!! :) :)

• On a scale of 1-10 where 10 is "you love curl", I'm a 9 btw

• More questions about what kinds of projects curl is actually used for.

• More cowbell?

• Ask for if features such as zero copy (or as little copies as possible, by doing things such as
allowing buffers passed to writefunction callbacks to remain allocated until freed by the
callback) should be implemented. I would also like to see a way where you could pass
curl_multi_socket_action a structure CURLM_SOCKETFUNCTION asks you to store with
an event loop's data instead of only having the curl library handle it with it's hash table for a
few performance enhancements.

• In which area do you encounter the most problems

• I would like to see less irrelevant questions such as questions regarding how women and
minorities are being "handled" because it seems rather condescending to be singled out as a
group which needs extra attention in a survey. Why do I need to be "handled" specially if I
am a minority. Just handle me like a contributor, tell me when my contributions are crap and
judge my contributions based on their merits. Better yet, just ignore any irrelevant attributes
altogether. It would be nice to also get a question like a "general comments" section where I
could tell you: "Just keep the damn thing simple!"

• How to build for XP would be nice

• how much do you like our new websockets support?

• How many hours per week I save with curl

• How do you use the curl CLI? I use it in tests, debugging REST APIs, etc. How often do
you use the curl CLI? Why did you choose to use libcurl instead of other libraries?

• Do you use libcurl, or just the curl command line tool? If so can you answer the questions
accordingly. Am just a curl command line tool person. I haven't used libcurl, so unable to
answer a lot of the questions

• Do you use curl only for install scripts piping into bash?

• Do we need to keep the 'legacy' protocols? If so, which ones?

• DANIEL FOR PRESIDENT

• Ask about which more uncommon flags are being used. Like -J, or --next

• Ask about curl command UX

• Additional comments: where I would write “cURL license is a good feature”

• a question regarding packaging - brew, deb, conan

• "Is C89 compatibility important to you?" (My answer: yes)

• "How did you find curl?" (Answer: I searched for an open source, sensible C tool to give me
HTTPS 'get()' functionality from the command line. And a brief search showed it was the
perfect solution. 'CURL' is a great name!

	About curl
	Survey Background

	Number of responses
	Returning respondents?
	From where?
	What protocols
	Do you use curl/libcurl on multiple platforms?
	You use curl/libcurl on which platforms?
	If you use curl on Windows, which Windows versions?
	Do you typically build curl/libcurl yourself?
	Tell us which libcurl features you use?
	Which SSL backends do you typically use?
	How many years have you been using curl?
	Channels you participate in
	How do you access libcurl?
	Where do you live?
	Did you answer this survey last year?
	What are the primary reasons you haven't contributed or don't contribute more to the project?
	What could the curl project do/change to get (more) contributions from you?
	1. Enhance documentation
	2. mark “low hanging fruit”
	3. Accept PRs faster (even in feature freeze periods)
	3. Add extra hours to the day
	4. Leave some bugs for us!
	5. Nothing!
	6. Be better!

	How good is the project to handle…
	Which are the curl project’s best areas?
	Which are the curl project’s worst areas?
	If you couldn't use libcurl, what would be your preferred alternative?
	If you miss support for something, tell us what!
	If you miss support for something, tell us what!
	HTTP Digest Authentication with sha256
	Running the test suite on windows
	better cmake projects
	Strongly typed variants of curl_easy_setopt
	I would like a library initialization function (similar to curl_global_init) that lets me specify which protocols libcurl should handle and disables all others.
	Our biggest problem is that we haven't quite figured out how we can distribute a pre-built curl/libcurl binary if we don't know what libraries do/don't exist on customer machines.
	Better API for integrating into an existing event loop.
	Aggregated bandwidth rate limiting for a multi
	Function to clean up idle connections in a multi
	Simple header retrieval makes it easy to use in scripts without cut awk grep mess
	recursive download
	Read requests from an har file (http archive) and replay them like a browser in terms of dependencies and parallelism.
	Too easy and commonplace to invisibly disable security (-k, VERIFYPEER/HOST). Would be useful to be able to enforce secure protocols with security features enabled.
	Colored terminal output for curl binary in verbose mode to better distinguish between headers, content and connection info.
	Compilation as C++ code: Add casts for all malloc()/calloc() calls. The reason is that we compile the curl code for .NET.
	brotli (de)compression support for testing servers (enabled by –compressed)
	More tooling around client certs - e.g. a default cert if the server accepts the signing CA
	Express your algorithms in the highest-level language possible. Compile that DSL to machine code.
	Client cert handling on the cmdline can be a bit cumbersome...I almost want a list of services in config file to apply the keys to. Think ssh config.
	A curl_multi implementation around poll() instead of select()
	wget's -N flag, because -{z,o}"fname" fname --next… is too verbose
	Dynamic backend loading like SDL_DYNAMIC_API in SDL2
	more environment variables.
	HTTP authentication via callback so URL and headers can be analyzed and send appropriate authentication details
	A UI like httpie would be awesome
	Extended test suite for easy out-of-the-box testing on EBCDIC machines (without need to patch tests)
	More examples of the APIs
	Documentation is generally great but could use examples showing how to configure the library and its handles for very high throughput.
	better rtmp, imap and smtp support. it is difficult to use all of those.
	Multiple/dynamic SSL backends in *one* libcurl
	websockets
	http/2 multiplexing
	up to date Android binaries
	automatic proxy configuration on Windows
	Nice to have (for testing other software): custom I/O functions to read/write, i.e. abstraction around a file descriptor
	C++ api (classes)
	Protocol-specific wrappers around curl_easy, with good, secure default options set
	Webdav

	What feature/bug would you like to see the project REMOVE?
	protocols that don't really get used
	The -k flag should go
	Synchronous API
	RTMP, but librtmp is dead. if absolutely need to keep, find a way to use ffmpeg's implementation.
	NSS
	HTTP/2
	HTTP/0.9 support
	HTTP Pipelining (too many shaky tests)
	CURLOPT_SSL_VERIFYHOST == 1
	curl.h redefining integer types per platform instead of relying on stdint.h
	Crappy SSL backends
	Advertising size reduction options in the build instructions. It makes desktop developers unnecessarily cripple the library because they can.

	Which of these API(s) would you use if they existed?
	Should curl join an umbrella project?
	Do you wish to attend the next curl://up meeting/conference?
	Should libcurl get rewritten in another language?
	What should "curl 8.0" be?
	Which question would you like to see in this survey next year?

