
curl user survey analysis 2022

“This is such an awesome project and the gold standard for how to run an
open source project. It was so nice getting in contact and participating
when I found some issues. I just love the approach to keep doing
everything better, all the time, and over the years get to this level.”

summary and analysis by Daniel Stenberg
Jun 16, 2022

About curl
Curl is an established and mature open source project that produces the curl tool and
the libcurl library. While is a small project, with few maintainers its products run in
several billion Internet connected devices, applications, tools and services. curl is
without doubt one of the world’s most widely used software components.

Survey Background
We run a curl user survey annually in an attempt to catch trends, views and longer
running changes in the project, its users and in how curl fits into the wider ecosystem.
This year, the survey was up 14 days from May 18 to and including May 31. This was the
9th annual survey as the first one ran in 2014.
The survey was announced on the curl-users and curl-library mailing lists (with
reminders), numerous times on Daniel’s twitter feed (@bagder), on LinkedIn and on
Daniel’s blog (https://daniel.haxx.se/blog). The survey was also announced on the curl
web site with an “alert style” banner on most pages on the site that made it hard to
miss for web visitors.

Survey Bias
We only reach and get responses from a small subset of users who voluntarily decide
to fill in the questionnaire while the vast majority of users and curl developers never
get to hear about it and never get an opportunity to respond. Self-selected
respondents to a survey makes the results hard to interpret and judge. This should
make us ask ourselves: is this what our users think, or is it just the opinions of the
subset of users that we happened to reach. We simply have to work with what we have.

Hosted by Google
We use a service run by Google to perform the survey, which leads to us losing the
share of users who refuse to use services hosted by them. We feel compelled to go
with simplicity, no cost and convenience of the service rather than trying to please
everyone. We have not found a compelling and competitive alternative provider for the
survey.

Responses
This year’s survey results match previous years to a fascinating degree - which is a
general pattern over the years. We seem to get strikingly similar answers year over
year, even though only 18.2% of the users this year say they answered the survey last
year (up from 12% last year).
One detail that broke the trend this year was the number of responses. We have seen a
slow increase in attention to this survey in previous years, but in 2022 that took a real
nosedive. This year’s 473 responses is just 43.9% of last year’s 1078 responses and the
lowest participation level in six years. I have no idea why.

Continents
The users who answer the survey remain European to a large degree (59%). The second
largest continent is North America at 26%.
The distribution across the world roughly matches the results we have seen for all five
years we have asked this question.

Kind of users
To get a clue who everyone is that answers this survey, we added this question a few
years ago and the response distribution is amazingly similar year-to-year. More than
half identify as backend developers, sysadmins or app developers. The other category
is notably big at 13.1%, probably because people don’t quite like the provided options
well enough.

Protocols
One of the most popular questions and answers from this survey every year. What
protocols are people using? How have they changed from last year? This year follows
the trend from previous years. HTTPS and HTTP are by far the most commonly used
curl protocols. This chart is often referred back to in subsequent discussions when
discussing if there are support protocols ripe for getting ripped out or otherwise
deprecated.

HTTPS 97.90%
HTTP 89.80%
FTP 23.40%
SFTP 12.70%
FTPS 11.30%
FILE 11.30%
SMTP 8.70%
SCP 7.20%
SMTPS 6.20%
GOPHER 5.10%
LDAP 4.90%
LDAPS 4.90%
IMAPS 4.70%
TELNET 4.00%
IMAP 4.00%
TFTP 3.80%
SMB 3.20%
POP3 3.20%
POP3S 2.50%
MQTT 2.10%
SMBS 1.90%
RTMPS 1.70%
RTMP 1.50%
DICT 1.50%
GOPHERS 1.50%
RTSP 1.10%

Looking at the six most popular protocols this year (the ones with 10% or more usage)
and how they have developed over the years, we can possibly see a decreased use of
FTP - the yellow line in the graph below. HTTPS became the number one protocol in
2018 and has remained in top since then.

On average each respondent selected 3.2 protocols. The median number of protocols
selected were two. Two users selected 26 protocols.
41.4% of users use three or more protocols. 26.0% use four or more. 16.2% use five or
more protocols. 10.9% use six or more protocols. 2.9% use ten or more protocols!

Platforms
We have records of curl running on 86 different operating systems over the years.
Several of those were probably custom modified with changes we never got
upstreamed, and many of the users on niche systems most likely did not respond to
this survey.

The top-5 platforms remain the same over time. Windows surpassed macOS a few
years ago and it seems to reliably have established itself as the number two platform.
On average, users selected 2.4 platforms in the answer.

The complete results for 2022

Linux 92.80%
Windows 52.00%
macOS 42.50%
Android 14.90%
FreeBSD 10.20%
iOS 5.90%
OpenBSD 5.70%
NetBSD 2.50%
Game console 2.10%
Solaris 1.90%
IBM I 1.90%

Another unix 1.30%
OpenIndiana 1.30%
AIX 1.30%
RTOS 0.80%
VMS 0.80%
MS-DOS 0.60%
AmigaOS 0.40%
HPUX 0.40%
IRIX 0.20%

60% of users remain using 2-3 platforms and the distribution of single and multi
platform users remains astonishingly fixed over the years.

Windows versions
This question stands out this year as the answers are significantly different compared
to last year. This was hardly any surprise since Windows 11 was released since last
year’s survey. It raced up to the second-most used Windows version at once with 42.9%,
and correspondingly Windows 10 shrunk from 95% to 79.4%.

The full distribution 2022. The average response selected 1.86 versions.

Windows 10 79.4%
Windows 11 42.9%
Windows 7 20.6%
Windows Server 2012 / 2016 11.9%
Windows 8 11.5%
Windows XP 5.6%
Windows Server 2008 4.0%
Windows Vista 3.2%
Windows Server 2019 2.0%
Windows CE/Embedded 1.2%
Windows Server 2003 0.8%
Windows 2000 0.8%
Windows Server 2022 0.8%
Windows 98 0.8%
Windows 95 0.8%

Building curl
67.6% of the respondents say they don’t build curl at all which certainly lowers the
number of people who actually answered this question with their preferred method.
configure remains the top build method this year at 57.7%.

Features
What do people do with curl? We can see some interesting trends here that continue
this year.

HTTP/2 use continues to grow. 65.2% say they use it. HTTP/3 use also increased a lot up
to 21.3% (from 18.9% last year), which I believe is a significant number since the feature
is still experimental in curl and you need to explicitly enable it in the build.

TLS Client certificates are down by a lot to 20,.% from 34.3% last year.

The graph below shows the trend for the features ranked top-10 this year.

Here’s the full distribution. On average, users selected 3.47 features each.

HTTP/2 65.2%
HTTP proxy 32.1%
HTTP automatic decompression 29.6%
TCP keepalive 23.2%
using libcurl multi-threaded 22.1%
HTTP/3 21.3%
TLS client certificates 20.2%
HTTPS proxy 18.3%
SOCKS proxy 16.7%
UNIX domain sockets 13.2%

Bandwidth rate limiting 12.4%
HSTS 11.3%
DNS-over-HTTPS (DoH) 11.1%
curl_multi_socket API 10.8%
.netrc 10.0%
HTTP/0.9 8.6%
CURLOPT_FAILONERROR 6.5%
NTLM auth 5.9%
the share interface 5.7%
Alt-svc 3.2%

TLS backends
At the time of the survey, curl supported 13 different TLS backends, down from 14 last
year (MesaLink support is gone). This year 25.1% said they did not know their TLS
backend, and I think in general it might be a good thing that not all users know this, as
it is not supposed to be an important factor for users.

OpenSSL remains the undisputed king of TLS backends for curl users at 98.1% of the
ones who did know. It means it continues at roughly the same level it has been at in
every curl user survey since 2015. The second most used backend was Schannel at a
mere 18.8%.

The real fight the last few years have been between Schannel, Secure Transport and
GnuTLS for second place. To better illustrate this, the graph below is made without
OpenSSL to allow us to zoom in a little.

The complete distribution in 2022 looks like this:

OpenSSL 98.1%
schannel 18.8%
SecureTransport 17.1%

GnuTLS 15.0%
libressl 9.3%
BoringSSL 3.6%
NSS 3.4%
mbedTLS 2.5%
wolfSSL 2.5%
rustls 1.6%
BearSSL 0.9%
gskit 0.7%
AmiSSL 0.2%

Years of curl use
The first curl shipped in the spring 1998 and the general sense I get is that we have
happy and loyal users. curl still delivers on its promise. It is a solid and trusted tool.

This question is a (rough) method to see if we manage to gain new users and how well
we retain old users. New for this year is that we introduced an answer alternative for
“18 years or more” as previously “12 years or more” was the top alternative.

The distribution appears to be safely distributed among users of all ages.

Participating channels
Where do users learn and talk about curl? This year does not seem to reveal anything
new but instead establishes the new truths we have learned: the mailing lists are
diminishing communication channels among users while my Twitter feed and personal
blog have become major ones.

A few people wrote in “Daniel’s youtube channel”, which might be reason enough to
offer as an answer next year.

What ways of communication would users like us to use (more?) This was a new
question for this year meant as a probe to learn if there is somewhere we need to be
or to go in the future for more and better project communication.

My reading of the numbers (presented below), is that we are already covering the
desired messaging channels fairly well. While there is no official curl Twitter account, I
do a lot of curl related communication and discussion on my personal account
@bagder. I think we should keep an eye on how the Slack and Discourse answers
develop in the future.

Twitter 35.70%

Mailing lists 30.50%
GitHub discussions 29%
Mastodon 19.70%
IRC 17.10%
Slack 7.10%
Discourse 5.20%
LinkedIn 3.70%
Facebook 3%
Video meetings 2.20%
Matrix 2.20%
RSS 1.50%
Discord 1.40%
Telegram 1.10%
XMPP 0.70%

Accessing libcurl
libcurl is the network transfer engine of the command line tool and is commonly
accessed by users via bindings. The bindings are what makes libcurl truly accessible to
almost all developers everywhere. Which ones do people use?

78.5% answered the command line tool curl, and the average response had 1.86
answers selected. 32.2% selected the native C API. Only two actual bindings got more
than 10% of the answers. The graph below shows the top-3 binding’s development
since 2015. The PHP binding’s share seems to slowly shrink over time.

Here’s the complete binding distribution for 2022:

curl 78.5%
plain C 32.2%
PHP/CURL 19.3%
pycurl 14%
Node-libcurl 4.1%
curlpp 3.9%
Go-curl 3.9%
.NET core 3.9%
Rust-curl 3.6%
www::curl (perl) 3.4%
Ruby 3.4%

Java 2.7%
Lua 2.4%
R curl 1.7%
Common Lisp 1.2%
Tclcurl 1.2%

Contributions
Users still contribute to a large degree. Over 30% of the answers detailed at least one
way they contributed.

I haven’t contributed yet 68.9%
filed bug reports 13.8%
sent pull requests 12.3%
I can’t remember 2.7%
helped out in other ways 5.2%
curl stickers on prominent places 4.9%
responded to mailing lists / forums 6.9%
donated money 4.2%
spend time in the IRC channel 2.2%
run tests or provide infrastructure 1.7%
write documentation 1.7%

And by no surprise at all, curl users are involved in other Open Source projects to a
very high degree.

When asked for the reason why they have not contributed or not contributed more, the
reasons they state are:

Everything works to my satisfaction 60.2%

I don’t have time 41.6%
I don’t know the programming language 19.9%
I don’t have the energy 19.5%
Things get fixed fast enough 19.5%
Too hard to get started 12.4%
I don’t like or approve of GitHub 4.4%
My work/legal reasons prohibit me 3.8%
I can’t deal with the tools 3.5%
I don’t like or use email 1.8%
The project doesn’t want my changes 1.8%
I find it hard to work with the curl developers 1.3%

It is pleasing to see that among the two alternatives that are most negative for the
project (highlighted with red in the table) there is a fairly low answer rate.

Looking at the top-5 reasons over the years, they remain rather solid. This could be
interpreted that the project keeps performing at a similar level.

This year we also added a free-text form asking “What could the curl project do/change
to get (more) contributions from you?”. 90 respondents took their time to fill in
suggestions.

It is hard to summarize 90 separate free form replies, but a few patterns could be
spotted:

1. The jokes about adding bugs and creating time machines

2. The people who said there’s nothing we need to do
3. Use another programming language
4. Eleven replies were variations of list issues marked as "good for first time

contributors and other ways to make it easier to find where to contribute.

That last category there seems like the only one that can be acted upon. We have
improved documentation over the last few years, including “getting started” entry
points, that is meant to help newcomers to the project find where to start. We also list
TODO items and known bugs that are ready to get grabbed.

We do however not provide “good first issue” labels or similar on reported issues. The
reason for this is simple: all our easy issues are fixed and closed almost instantly. We
take great pride in our speed and agility in acting on reported mistakes. In order to
provide such beginner labels on issues we would have to deliberately keep issues
open (for how long?) and somehow restrict who would be allowed to fix them. I do not
see us doing this in the near term.

How good is the project and its members
Another question meant to help us probe how we are doing in the project and we get
worse or better at specific things over time.

The respondents were asked to rate how good we are at handling things in these seven
different areas on a scale from 1 to 5.

1. Handling security-related issues
2. Attribution and giving credits
3. Bug reports
4. Patches and pull-requests
5. Information about what's going on
6. Helping newcomers to the project
7. Female contributors and other minorities

The order of the above areas are also the order of how good the users rank us. The
order has remained remarkably similar over the years. I think the bottom two areas are
what we should take away from this and dig deep to see how we can improve.

Counting the average score on all 7 areas and plotting that in a graph shows that we
only vary very little year-to-year. Possibly a miniscule growing trend can be detected
even if we went down from 4.30 last year to 4.29 in 2022.

Best/worst areas
Another way to get people to help us identify what we do well and where we need to
work harder is to ask them to identify the best and worst areas in the project. The
users could select 5 areas, and the exact same areas were listed for both questions.
On average, users selected 4.00 best areas and the full ranking is seen in the table
below. I highlighted the top-5.

its availability and functionality on many platforms 59.6%
the quality of the products, curl/libcurl 59.3%
documentation 40.2%
the support of many protocols 37.0%
the libcurl API 32.0%
standards compliance 24.3%
the features of the protocol implementations 22.8%
security 22.3%
support of multiple SSL backends 20.6%
project leadership 18.1%
bug fix rate 13.4%
footprint of the library/executable 13.2%
transfer speeds 10.9%
the user and developer community 10.2%
welcoming to new users and contributors 5.7%
its build environment/setup 4.5%
project web site and infrastructure 4.2%
test suite 2.5%

The top-5 best areas has shifted like this over the years since 2014:

403 persons supplied “best areas” and only 99 filled in “worst areas”. On average, the
ones who answered only supplied 1.57 worst areas. The ranking ended up like below. I
highlighted the top-5.

documentation 28.3%
project web site and infrastructure 17.2%
its build environment/setup 16.2%
welcoming to new users and contributors 16.2%
the libcurl API 14.1%
the support of many protocols 11.1%
test suite 9.1%
the user and developer community 8.1%
footprint of the library/executable 6.1%
its availability and functionality on many platforms 6.1%
bug fix rate 5.1%

security 4.0%
project leadership 4.0%
transfer speeds 3.0%
the features of the protocol implementations 3.0%
support of multiple SSL backends 2.0%
standards compliance 2.0%
the quality of the products, curl/libcurl 1.0%

The top-5 worst areas have changed like this over the years:

If you couldn't use libcurl, what would be your
preferred transfer library alternatives?

It keeps fascinating me that so many people actually select wget or code ripped out
from wget, as a libcurl alternative to consider. I mean, Wget is a fine product and
project, but it is not a library.

wget 60.0%
native lang lib 56.2%
homegrown 11.6%
windows native 9.7%
macos native 9.7%
asio 5.9%
Qt 4.6%
libsoup 3.8%
poco 2.2%
Cpp-netlib 1.6%
neon 1.4%
serf 0.3%

The top-5 libcurl alternatives have changed over time as shown in the graph below.
The “native lang lib” option seems to grow slowly.

Which other download utilities do you normally use?
This is only the third year we ask this question but the answer distribution seems to
already be established and has not changed much since last year. Clearly most curl
users are also familiar with and users of wget, scp/sftp and rsync.

wget 71.3%
scp/sftp 61.0%
rsync 57.0%
nc 26.2%
FileZilla 23.8%
ftp 19.6%
winscp 18.7%
Powershell 13.6%
fetch 11.9%
httpie 11.0%
lynx 9.1%
aria2c 8.6%
wget2 7.2%
lftp 6.5%
w3m 4.4%
Httrack 4.2%
axel 1.9%

Which of these features would you like to see curl
support?
It is easy to say yes please when asked about a feature, even if you actually never
thought about the feature before and eventually will hardly use it. Still, we ask this
question as a way to see which things and features that might have the largest user
interest and traction.
This question is hard to compare with previous years as we have added and removed
options from it over time. Both because of the features that were added but also to a
lesser degree because some features have been deemed not suitable.

Here are the results for 2022.

WebSockets 44.60%
JSON 40.30%
GraphQL 19.00%
gRPC 18.20%
DNS-over-TLS 17.00%
DNSSEC (DANE) 13.90%
Gemini 11.90%
Auto-detect proxy 11.10%
WHATWG URL syntax 10.80%
SRV records 10.50%
DNS-over-QUIC 10.20%
SMB v2/v3 10.20%
Thread-safe curl_global_init 9.90%
AIA (dl certs) 9.70%
DNS: URLs 8.00%
OCSP 7.70%
ECH (ex ESNI) 6.80%
dynloadable protocol handlers 6.30%
COAP 3.10%

WebSockets gets over 40% for the 6th year in a row. This fact helped me decide: work
on a WebSocket API implementation for curl was recently initiated… Also, the
thread-safe init feature has already landed in git.

Curiously, three content related features rated very high as 2, 3 and 4. JSON, GraphQL
and gRPC are more or less what usually would be considered users of libcurl, not

features for libcurl itself. I think we should at least think about and perhaps discuss
what we can and should do to make it easier to work with those protocols with curl.

Additionally, we provided a free form for users to fill in with the question If you miss
support for something, tell us what!

Another difficult to sum up question. I filtered off the ones that repeated things we
already have or do:

● When I use curl to test the multi-threaded access to HTTPS websites, it takes up
a lot of CPU resources, and the error code of TLS handshake failure will appear.
But the same test performs better in the winhttp object that comes with
windows

● Usenet Protocols, Better Progress bar or more progress bars,
● tutorials
● Tidak
● The protocol I am working with currently plans to either move to COAP, SSE or

websockets. So one of those would be nice to be able to work with. It would also
be nice to have official meson support, because it would make some things
easier for me, but I can understand if that is too much maintenance to add
ANOTHER build system. So far I have been really happy with libcurl though! It is
super easy to integrate into a different event loop and even interact with C++
coroutines and I don't have to deal with TLS myself (looking at you, beast).

● Specify a download size limit, return error if file exceeds that limit, or the
download process would have exceeded that limit when size is not known
initially, cut off the download at earliest moment once it is known the file is too
large

● SIP
● Recursive HTML loading / spidering a la Wget. It's the only reason I don't use

Curl for everything.
● Per transfer selection of TLS backend
● Native official copy API
● Multi-command support for -X, for example in pop3/pop3s: -X "RETR 1;QUIT"
● More MQTT features
● Masquerading as various web browsers in TLS handshakes
● It would be really nice to have a flag that sends basic terminal info in a header,

ex. the current size, the NO_COLOR env variable, potentially the TERM env
variable though that might be a bit much. This would be helpful for things like
`curl https://wttr.in` and `curl "https://shork.easrng.net/$(stty size|tr ' ' _)"`

● I'd be very interested in better embedded support (bare-metal, or at least easier
bring-up on new/obscure OSes)

● https by default
● Easier handling with PUT requests. As for now, the only option to create the PUT

method is '--upload-file' but sometimes the PUT method don't need a upload
file

● Debugging SSL connection errors
● curl --libcurl code generation that is known to be secure, that works in most

cases, and that works across older versions of libcurl too. And comprehensive
documentation for curl --libcurl that explains what exactly the generated code
does (like is it secure by default?).

● "As a monitoring service builder (updown.io) one thing I would be interested in
is more details about all requests, especially during redirects. For example
timings for all requests instead of the sum, intermediary URLs. I could do that by
implementing the redirect myself but then I risk having a much more brittle
implementation :)

● Also something else interesting in my case would have been to be able to query
without SSL validation (-k) but still know about the SSL error we would have
gotten without the flag, get the certificate, etc. I had to implement this by
running another separate test with the ruby http client."

● Access to underlying libssh2 errors in libcurl. For example, if a public key file
cannot be decrypted, you can only get that information from the debug logs. The
error code returned by curl does not help.

● 0-RTT/early-data, aria2-style multi-protocol and simultaneous-connection
downloading, toolchain-level hardening measures (CFI, shadow call stacks),
support for certificate revocation lists, Oblivious DoH.

● --xattr should set more attributes like creation date, download date, sha256 of
the file

Which of these APIs would you use if they existed in
libcurl?
The distinction here between the previous question is that this is clearly a libcurl
question. About APIs provided to applications using libcurl.

JSON generation/parsing 58.2%
Establishing a websocket connection 45.6%
A read()/write() style API for downloading and uploading 27.0%
Server-side support library for HTTP(S) 24.0%
HTTP Content-Disposition header parser/helper for applications 19.4%
Pluggable async DNS resolver 14.8%
Per-multi bandwidth limitation settings 9.1%

I highlighted the WebSocket alternative at 45.6% here as this is now work in progress.
In previous years, “header parsing/extracting” rated very high and as a direct result
from that we have since introduced a header API to libcurl.

It is not clear to me exactly what the JSON API would do, but I think it might be worth
exploring what we can do for such users seeing so many users believing they would
have use for it!

Which question would you like to see in this survey
next year?

Some good alternatives among the 20 provided suggestions. Not sure any of them will
actually make it:

● Would you like to see any of the defaults changed?
● Which QUIC/h3 backends do you use
● what categories of software do you use that use libcurl
● Which many curl build options can deprecated
● What’s your use case for curl? I don’t use it to transfer files, but for debugging

Http requests/responses, TLS and to explore APIs without writing code. I wonder
what other people use curl for?

● Questions regarding features that might be dropped in the near future could
provide some insight if somebody still depends on those features.

● Perhaps something along the line of which area/fields they use (lib)curl? E.g.
embedded, medical, defense, maritime, aerospace, space, vendoring/including
into other OSS projects, ... (multiple choice)

● Is there a long standing bug that you'd like to see fixed? If so, describe.
● How, specifically, would you improve an area you marked as one of the "curl

project’s worst areas" above? (open ended answer)

Anything else you think we should know?
Very open-ended. We got 79 responses.

Most of them were different ways of saying thank you or repeating suggestions already
filled in in other sections. Here are some of the rest that stood out:

● One thing I found a bit tedious recently when I upgraded from 7.50.3 to 7.68.0 is
scanning through all the changelog to find what could impact me

● Mandatory github 2FA by the end of 2023 is a no-go condition for me.
● It's hard to stop making features when a project gets really mature, because

that's about the only big things that need to be done. Sometimes, I worry that
the project might have reached its peak and adding additional features might
degrade the quality of the project. I have nothing tangible on curl as features
are very much analyzed before being integrated, but it's a pattern I have seen
multiple times, especially with open source projects.

● I think -R and --xattr should be the default
● I saw that after some version curl doesn't ship with certs and instead of

throwing a ssl certificate error it can throw hey we removed certs from binary go
figure out and a link to docs about it

● I feel some answers on the mailing list by Daniel seem overly abrasive to people
who maybe don't quite understand or grasp some aspect of what or why Daniel
holds strong views on. It is uncomfortable to read some of his responses even
when I understand some of his frustration or that the other party isn't
necessarily communicating well. I think setting a response aside for a bit and
re-reading and editing later to reduce emotion might help, but IDK, e-mail is
hard and these forms of communication breed stronger responses than would
be given in face-to-face encounters.

Final words
Crunching the numbers, reading the comments, digesting the meaning, filtering the
feedback and generating all these graphs in this report takes a lot of time and effort,
but I am happy to do it.
This user survey is in many ways the only time during the year that we can get wide
and direct feedback from real-world users and I want to make the most out of it.

Enjoy this. I suspect we will do this again next year.

/ Daniel

