
mastering the curl command line

August 31, 2023 Daniel Stenberg

Daniel Stenberg @bagder

https://daniel.haxx.se

@mastodon.social

curl.se/support.html

@bagder

Setup - August 31 2023

Live-streamed

Expected to last multiple hours

Recorded

Pause when you want to - hydrate!

Lots of material never previously presented

Terminal overlays on/off

@bagder

@bagder

Just ask!

@bagder

Live questions from non-visible chat

mastering the curl command line

❏ The project
❏ Internet transfers
❏ Command line
❏ curl basics
❏ TLS
❏ Proxies
❏ HTTP
❏ FTP
❏ Future

@bagder

The project

@bagder

slide 7 of 154

November 1996: httpget
August 1997: urlget
March 1998: curl
August 2000: libcurl

@bagder

Name

client for URLs
“see URL”
curl URL Request Library
Capable Ubiquitous Reliable Libre

@bagder

Main products

curl - command line tool for client-side internet transfers with URLs
libcurl - library for client-side internet transfers with URLs

★ Always and only client-side
★ An internet transfer: upload or download or both
★ Endpoint described with a URL

@bagder

Open Source
Everything in the curl project is open source

Every discussion and decision are held and done in the open

Open source means everyone can reshare and change

curl is (essentially) MIT licensed

@bagder

Free

Open

Gratis

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1996 - 2023, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.

@bagder

Development

curl is developed by “everyone”

only Daniel works on curl full-time

everyone can provide their proposed changes as “pull requests”

No paperwork required

Changes are reviewed and tested thoroughly

A small team of maintainers can accept and merge changes

@bagder

Releases

We do releases every 8 weeks (or sooner when necessary)

At 250 releases

We release what is in the master branch at the time

@bagder

Releases
@bagder

Releases

We never break existing functionality

@bagder

Issues and pull requests

Problems are submitted as issues

Changes are proposed as pull requests

https://github.com/curl/curl

@bagder

Learn more

man curl (curl --manual)

https://curl.se/docs/manpage.html

Everything curl

curl --help

@bagder

Asking for help

Mailing lists

command line tool questions: curl-users
https://lists.haxx.se/mailman/listinfo/curl-users

library/development/debugging questions: curl-library
https://lists.haxx.se/mailman/listinfo/curl-library

Web “forum”

https://github.com/curl/curl/discussions

@bagder

Paying for curl help

support@wolfssl.com

@bagder

DICT, FILE, FTP, FTPS, GOPHER, GOPHERS, HTTP, HTTPS, IMAP,
IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTMPS, RTSP, SCP, SFTP,
SMB, SMBS, SMTP, SMTPS, TELNET, TFTP, WS and WSS

TLS certificates, HTTP POST, HTTP PUT, FTP upload, HTTP form
based upload, proxies (SOCKS4, SOCKS5, HTTP and HTTPS),
HTTP/2, HTTP/3, cookies, user+password authentication (Basic,
Plain, Digest, CRAM-MD5, SCRAM-SHA, NTLM, Negotiate, Kerberos,
Bearer tokens and AWS Sigv4), file transfer resume, proxy
tunneling, HSTS, Alt-Svc, unix domain sockets, HTTP compression
(gzip, brotli and zstd), etags, parallel transfers, DNS-over-HTTPS
and much more

@bagder

Runs everywhere

Linux

Windows (by default)

macOS (by default)

FreeBSD

OpenBSD

VMS

…

@bagder

92 operating systems
@bagder

Syllable OS TPFTizenSymbian

Tru64

SunOS

tvOS ucLinux

Genode Hurd

iOSIntegrity

IllumosHP-UXHardenedBSDHaiku

z/OS

Nintendo
Switch

NonStop OS

NetWareMorphOS MPE/iX MS-DOS NCR MP-RAS NetBSD

RISC OSRedoxReactOS Sailfish OS

SCO Unix Serenity SINIX-Z

Qubes OS

UnixWare

WebOSvxWorks

VMS

Windows

UNICOS

Windows CEWii System
Software

AmigaOS Blackberry 10BeOSAndroid Blackberry
Tablet OSAIX Cell OSAros

IRIX

RTEMS

Mbed

Micrium

macOSMac OS 9Linux Lua RTOS

eCOS

FreeRTOS

FreeBSDFreeDOS

Fuchsia

DragonFly
BSDCygwinCisco IOS

OpenBSD OS/2 OS/400

Ultrix

ipadOS

NuttX

Solaris

Xbox
System

Chrome OS

MINIX

Garmin OS

QNXPlayStation
PortablePlan 9

OS21OpenStep Orbis OS

z/TPF z/VM z/VSE

Operating systems known to have run curl

Atari FreeMiNT

DR DOS

OmniOS

Zephyr

watchOS

Xenix

DG/UX

Commit authors
@bagder

Contributors
@bagder

Lines of code
@bagder

>20,000,000,000
installations

@bagder

“No big deal”
@bagder

Internet transfers

@bagder

slide 29 of 154

curl does internet transfers

A server is a remote machine running server software

curl acts as a client on the network

curl connects to a server in order to do Internet transfers

A stream of data from or to a server

Data from a server to curl, is a download

Data from curl to a server, is an upload

The data can be anything: text, images, maps, code, film, sound

curl does not care

curl does not know

@bagder

server

client

Up
lo

ad

Dow
nload

@bagder

Protocol Download Upload
HTTP(S) ✅ ✅

GOPHER(S) ✅ ❌
FTP(S) ✅ ✅
TELNET ❗ ❗

DICT ✅ ❌
LDAP(S) ✅ ❌

FILE ✅ ✅
TFTP ✅ ✅
SCP ✅ ✅
SFTP ✅ ✅

IMAP(S) ✅ ✅
POP3(S) ✅ ❌
SMTP(S) ❌ ✅

RTSP ✅ ❌
RTMP(S) ✅ ❌
SMB(S) ✅ ✅
MQTT ✅ ✅
WS(S) ✅ ✅

authenticated vs unauthenticated protocols
@bagder

Always use authenticated protocols

Authenticated means they use TLS or SSH

HTTPS, FTPS, LDAPS, IMAPS… end with S + SCP and SFTP

Never disable server verification (--insecure) in production

Unauthenticated transfers can be eavesdropped and tampered with

Without curl or the user knowing

Unauthenticated transfers are easily attacked - avoid!

Command line

@bagder

slide 33 of 154

command line options

short options: -V

long options: --version

boolean options: --path-as-is

options with arguments: --output store.html

arguments with spaces: --write-out “received %{path-as-is}”

negative boolean options: --no-path-as-is

combinatorial explosion

availability depends on version

availability depends on build

availability depends on 3rd party libraries (and their versions)

@bagder

command line options
@bagder

URLs by RFC 3986
scheme://user:password@host:1234/path?query#fragment

@bagder

RFC 3986+ really

no spaces, use %20

“schemeless” means guess

name and password - remember URL encode

hostname can be name, IDN name, IPv4 address or IPv6 address
https://example.com/

http://日本語.tw

ftp://192.168.0.1/

imap://[2a04:4e42:800::347]/

URLs
@bagder

Anything not an option is a URL

URL port numbers

A port number is from 0 to 65535

Each URL scheme has a default port that curl uses

Unless another is set in the URL
curl https://example.com:8080/

curl tftp://[fdea::1]:8080/

@bagder

URLs and browsers

browsers, URLs and their address bars

@bagder

URLs and output options

curl accepts any amount of URLs

every downloaded URL needs a destination - stdout or a file
curl -o file1 -o file2 https://example.com/file1 https://curl.se/file2

curl -o file1 https://example.com/file1 https://curl.se/file2 -o file2

curl -O https://example.com/file1 -O https://curl.se/file2

curl https://example.com/file1 https://curl.se/file2 > everything

--remote-name-all automatically sets -O for all URLs

@bagder

query

Queries are often name=value pairs separated by amperands (&)
name=daniel & tool=curl & age=old

Add query parts to the URL with --url-query [content]

content is (for example) “name=value”

“value” gets URL encoded to keep the URL fine

name@file reads the content from file before encoding it

… and more
curl https://example.com --url-query “name=Daniel Stenberg”

@bagder

scheme://user:password@host:1234/path?query#fragment

trurl

created in the spring of 2023

parses and manipulates URLs

companion tool to curl
$ trurl --url https://curl.se --set host=example.com

$ trurl --url https://curl.se/we/are.html --redirect here.html

$ trurl --url https://curl.se/we/../are.html --set port=8080

$ trurl --url "https://curl.se?name=hello" --append query=search=string

$ trurl "https://fake.host/search?q=answers&user=me#frag" --json

$ trurl "https://example.com?a=home&here=now&thisthen" -g '{query:a}'

https://curl.se/trurl/

@bagder

URL globbing

“globbing” = ranges and lists
[1-100]
[001-100]
[a-z]
[001-100:10]
[a-z:2]
{one,two,three}
{mon,tue,wed,thu}

$ curl https://{ftp,www,test}.example.com/img[1-22].jpg -o
“hey_#2_#1.jpg”
Can do 9 * 1018 iterations - per URL
--globoff turns it off

@bagder

Parallel transfers

by default, URLs are transferred serially, one by one

-Z (--parallel)

By default up to 50 simultaneous

Change with --parallel‐max [num]

Prefer speed to multiplexing with --parallel‐immediate

Works for downloads and uploads

@bagder

server

client

Up
lo

ad

Dow
nload

list curl options

--help

--help [category]

--help category

--help all

curl --manual

@bagder

config file

“command lines in a file”

one option (plus argument) per line

$HOME/.curlrc is used by default

-K [file] or --config [file]

can be read from stdin

can be generated (and huge)

10MB line length limit

@bagder

p4ssw0rds

-u name:password

.netrc (more soon)

config files

local leakage

network leakage

debug log leakage

@bagder

progress meters

Unless -s, --silent or --no-progress-meter
% Total % Received % Xferd Average Speed Time Curr.
 Dload Upload Total Current Left Speed
0 151M 0 38608 0 0 9406 0 4:41:43 0:00:04 4:41:39 9287

84.6%

DL% UL% Dled Uled Xfers Live Total Current Left Speed
12% -- 34.5G 0 2 2 --:--:-- 0:00:09 --:--:-- 3903M

-#, --progress-bar

Different again when doing parallel transfers

@bagder

--next

do everything to the left of it

then reset the state

continue on the other side

in perpetuity

$ curl -H “header: one” https://example.com/one
-H “header: two” https://example.com/two

$ curl -H “header: one” https://example.com/one
--next -H “header: two” https://example.com/two

@bagder

curl basics

@bagder

slide 50 of 154

curl version

--version or -V

$ curl -V
curl 8.2.1 (x86_64-pc-linux-gnu) libcurl/8.2.1 OpenSSL/3.0.10 zlib/1.2.13
brotli/1.0.9 zstd/1.5.5 libidn2/2.3.4 libpsl/0.21.2 (+libidn2/2.3.3)
libssh2/1.11.0 nghttp2/1.55.1 librtmp/2.3 OpenLDAP/2.5.13
Release-Date: 2023-07-26
Protocols: dict file ftp ftps gopher gophers http https imap imaps ldap
ldaps mqtt pop3 pop3s rtmp rtsp scp sftp smb smbs smtp smtps telnet tftp
Features: alt-svc AsynchDNS brotli GSS-API HSTS HTTP2 HTTPS-proxy IDN
IPv6 Kerberos Largefile libz NTLM NTLM_WB PSL SPNEGO SSL threadsafe
TLS-SRP UnixSockets zstd

@bagder

verbose

--verbose or -v

-v and -vv is the same

--trace-ascii or --trace

--trace-time

--trace-ids

careful before you share debug logs with others

@bagder

trace
@bagder

$ curl -d moo --trace - https://curl.se/
== Info: processing: https://curl.se/
== Info: Trying [2a04:4e42:e00::347]:443...
== Info: Connected to curl.se (2a04:4e42:e00::347) port 443
== Info: ALPN: offers h2,http/1.1
=> Send SSL data, 5 bytes (0x5)
0000: 16 03 01 02 00
== Info: TLSv1.3 (OUT), TLS handshake, Client hello (1):
=> Send SSL data, 512 bytes (0x200)
0000: 01 00 01 fc 03 03 82 d6 6e 54 af be fa d7 91 c1nT......
0010: 92 0a 4e bf dc f7 39 a4 53 4d ee 22 18 bc c1 86 ..N...9.SM."....
0020: 92 96 9a a1 73 88 20 ee 52 63 66 65 8d 06 45 dfs. .Rcfe..E.
…
== Info: CAfile: /etc/ssl/certs/ca-certificates.crt
== Info: CApath: /etc/ssl/certs
<= Recv SSL data, 5 bytes (0x5)
0000: 16 03 03 00 7a z
== Info: TLSv1.3 (IN), TLS handshake, Server hello (2):
<= Recv SSL data, 122 bytes (0x7a)
0000: 02 00 00 76 03 03 59 27 14 18 87 2b ec 23 19 ab ...v..Y'...+.#..
0010: 30 a0 f5 e0 97 30 89 27 44 85 c1 0a c9 d0 9d 74 0....0.'D......t
…
== Info: SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384
== Info: ALPN: server accepted h2
== Info: Server certificate:
== Info: subject: CN=curl.se
== Info: start date: Jun 22 08:07:48 2023 GMT
== Info: expire date: Sep 20 08:07:47 2023 GMT
== Info: subjectAltName: host "curl.se" matched cert's "curl.se"
== Info: issuer: C=US; O=Let's Encrypt; CN=R3
== Info: SSL certificate verify ok.
…

== Info: using HTTP/2
== Info: h2 [:method: POST]
== Info: h2 [:scheme: https]
== Info: h2 [:authority: curl.se]
== Info: h2 [:path: /]
== Info: h2 [user-agent: curl/8.2.1]
== Info: h2 [accept: */*]
== Info: h2 [content-length: 3]
== Info: h2 [content-type: application/x-www-form-urlencoded]
== Info: Using Stream ID: 1
=> Send SSL data, 5 bytes (0x5)
0000: 17 03 03 00 5d ]
=> Send SSL data, 1 bytes (0x1)
0000: 17 .
=> Send header, 137 bytes (0x89)
0000: 50 4f 53 54 20 2f 20 48 54 54 50 2f 32 0d 0a 48 POST / HTTP/2..H
0010: 6f 73 74 3a 20 63 75 72 6c 2e 73 65 0d 0a 55 73 ost: curl.se..Us
0020: 65 72 2d 41 67 65 6e 74 3a 20 63 75 72 6c 2f 38 er-Agent: curl/8
0030: 2e 32 2e 31 0d 0a 41 63 63 65 70 74 3a 20 2a 2f .2.1..Accept: */
0040: 2a 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 *..Content-Lengt
0050: 68 3a 20 33 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 h: 3..Content-Ty
0060: 70 65 3a 20 61 70 70 6c 69 63 61 74 69 6f 6e 2f pe: application/
0070: 78 2d 77 77 77 2d 66 6f 72 6d 2d 75 72 6c 65 6e x-www-form-urlen
0080: 63 6f 64 65 64 0d 0a 0d 0a coded....
=> Send data, 3 bytes (0x3)
0000: 6d 6f 6f moo

…
<= Recv header, 13 bytes (0xd)
0000: 48 54 54 50 2f 32 20 32 30 30 20 0d 0a HTTP/2 200 ..
<= Recv header, 22 bytes (0x16)
0000: 73 65 72 76 65 72 3a 20 6e 67 69 6e 78 2f 31 2e server: nginx/1.
0010: 32 31 2e 31 0d 0a 21.1..
<= Recv header, 25 bytes (0x19)
0000: 63 6f 6e 74 65 6e 74 2d 74 79 70 65 3a 20 74 65 content-type: te
0010: 78 74 2f 68 74 6d 6c 0d 0a xt/html..
<= Recv header, 29 bytes (0x1d)
0000: 78 2d 66 72 61 6d 65 2d 6f 70 74 69 6f 6e 73 3a x-frame-options:
0010: 20 53 41 4d 45 4f 52 49 47 49 4e 0d 0a SAMEORIGIN..
<= Recv header, 46 bytes (0x2e)
0000: 6c 61 73 74 2d 6d 6f 64 69 66 69 65 64 3a 20 54 last-modified: T
0010: 68 75 2c 20 31 30 20 41 75 67 20 32 30 32 33 20 hu, 10 Aug 2023
0020: 30 32 3a 30 35 3a 30 33 20 47 4d 54 0d 0a 02:05:03 GMT..
<= Recv header, 28 bytes (0x1c)
0000: 65 74 61 67 3a 20 22 32 30 64 39 2d 36 30 32 38 etag: "20d9-6028
0010: 38 30 36 33 33 31 35 34 64 22 0d 0a 80633154d"..
<= Recv header, 22 bytes (0x16)
0000: 61 63 63 65 70 74 2d 72 61 6e 67 65 73 3a 20 62 accept-ranges: b
0010: 79 74 65 73 0d 0a ytes..
<= Recv header, 27 bytes (0x1b)
0000: 63 61 63 68 65 2d 63 6f 6e 74 72 6f 6c 3a 20 6d cache-control: m
0010: 61 78 2d 61 67 65 3d 36 30 0d 0a ax-age=60..
<= Recv header, 40 bytes (0x28)
0000: 65 78 70 69 72 65 73 3a 20 54 68 75 2c 20 31 30 expires: Thu, 10
0010: 20 41 75 67 20 32 30 32 33 20 30 37 3a 30 36 3a Aug 2023 07:06:
0020: 31 34 20 47 4d 54 0d 0a 14 GMT..
…

…
<= Recv data, 867 bytes (0x363)
0000: 3c 21 44 4f 43 54 59 50 45 20 48 54 4d 4c 20 50 <!DOCTYPE HTML P
0010: 55 42 4c 49 43 20 22 2d 2f 2f 57 33 43 2f 2f 44 UBLIC "-//W3C//D
0020: 54 44 20 48 54 4d 4c 20 34 2e 30 31 20 54 72 61 TD HTML 4.01 Tra
0030: 6e 73 69 74 69 6f 6e 61 6c 2f 2f 45 4e 22 20 22 nsitional//EN" "
0040: 68 74 74 70 3a 2f 2f 77 77 77 2e 77 33 2e 6f 72 http://www.w3.or
0050: 67 2f 54 52 2f 68 74 6d 6c 34 2f 6c 6f 6f 73 65 g/TR/html4/loose
0060: 2e 64 74 64 22 3e 0a 3c 68 74 6d 6c 20 6c 61 6e .dtd">.<html lan
0070: 67 3d 22 65 6e 22 3e 0a 3c 68 65 61 64 3e 0a 3c g="en">.<head>.<
0080: 74 69 74 6c 65 3e 63 75 72 6c 3c 2f 74 69 74 6c title>curl</titl
0090: 65 3e 0a 3c 6d 65 74 61 20 6e 61 6d 65 3d 22 76 e>.<meta name="v
00a0: 69 65 77 70 6f 72 74 22 20 63 6f 6e 74 65 6e 74 iewport" content
00b0: 3d 22 77 69 64 74 68 3d 64 65 76 69 63 65 2d 77 ="width=device-w
00c0: 69 64 74 68 2c 20 69 6e 69 74 69 61 6c 2d 73 63 idth, initial-sc
00d0: 61 6c 65 3d 31 2e 30 22 3e 0a 3c 6d 65 74 61 20 ale=1.0">.<meta
00e0: 63 6f 6e 74 65 6e 74 3d 22 74 65 78 74 2f 68 74 content="text/ht
00f0: 6d 6c 3b 20 63 68 61 72 73 65 74 3d 55 54 46 2d ml; charset=UTF-
0100: 38 22 20 68 74 74 70 2d 65 71 75 69 76 3d 22 43 8" http-equiv="C
0110: 6f 6e 74 65 6e 74 2d 54 79 70 65 22 3e 0a 3c 6c ontent-Type">.<l
0120: 69 6e 6b 20 72 65 6c 3d 22 73 74 79 6c 65 73 68 ink rel="stylesh

curl -d moo --trace - https://curl.se/

--write-out

outputs text, information and HTTP headers after a transfer is completed
curl -w "formatted string" http://example.com/

curl -w @filename http://example.com/

curl -w @- http://example.com/

Information from over 50 “variables”
"Type: %{content_type}\nCode: %{response_code}\n"

Show HTTP response header contents
"Server: %header{server}\nDate: %header{date}\n"

@bagder

persistent connections

connections are kept “alive”

repeated transfers to the same host try to reuse the connection

reused connections is a key to speedier transfers

reuse is done per scheme + host name + port - not IP address

all connections close when curl exits

@bagder

persistent connections illustrated
@bagder

curl.se

client

example.com

$ curl
https://example.com/file1
https://curl.se/file1
https://example.com/file2
http://curl.se/file2

1

2

3

4

downloads

download to a file named by the URL: -O (--remote-name)

use the Content-Disposition name from the server:
--remote‐header‐name

danger!
shell redirect works: curl https://curl.se > output.txt
curl https://curl.se https://example.com > output.txt

maximum file size accepted: --max‐filesize <bytes>

file size often not known ahead of time!

--output-dir saves the -O data in another directory

--create-dirs is useful in a combination

@bagder

retry

If a transient error is returned when curl tries to perform a transfer

Do a few retries: --retry [num]

Retry for this long: --retry‐max‐time <seconds>

Wait this long between retries: --retry‐delay <seconds>

Consider “connection refused” to be transient: --retry‐connrefused

Consider all errors transient: --retry‐all-errors

@bagder

uploads

upload is data sent to the server

curl -T file $URL

if URL has no file name part, appends the -T name to the URL

curl -T file ftp://example.com/path/

HTTP offers several different uploads

@bagder

server

client

Up
lo

ad

Dow
nload

transfer controls

stop slow transfers
--speed‐limit <speed> --speed‐time <seconds>

transfer rate limiting
curl --limit-rate 100K https://example.com

no more than this number of transfer starts per time unit
curl --rate 2/s https://example.com/[1-20].jpg
curl --rate 3/h https://example.com/[1-20].html
curl --rate 14/m https://example.com/day/[1-365]/fun.html

@bagder

naming tricks

Provide a name + port => address mapping
curl --resolve example.com:443:127.0.0.1 https://example.com/
curl --resolve example.com:80:[2a04:4e42:200::347] http://example.com/

Provide a name + port => name + port mapping
curl --connect-to example.com:80:curl.se:8080 http://example.com/

Talking HTTP, it is also sometimes fun/useful to set Host: header:
curl -H “host: curl.fake” http://example.com/

When TLS is used, this might fail certificate checks

@bagder

connection race

curl uses both IPv6 and IPv4 when possible - and races them against each other

“Happy eyeballs”

Restrict to a fixed IP version with --ipv4 or --ipv6

@bagder

curl.se

client

curl.se has address 151.101.129.91
curl.se has address 151.101.193.91
curl.se has address 151.101.1.91
curl.se has address 151.101.65.91
curl.se has IPv6 address 2a04:4e42:800::347
curl.se has IPv6 address 2a04:4e42:a00::347
curl.se has IPv6 address 2a04:4e42:c00::347
curl.se has IPv6 address 2a04:4e42:e00::347
curl.se has IPv6 address 2a04:4e42::347
curl.se has IPv6 address 2a04:4e42:200::347
curl.se has IPv6 address 2a04:4e42:400::347
curl.se has IPv6 address 2a04:4e42:600::347

DNS

2a04:4e42:800::347
2a04:4e42:a00::347
2a04:4e42:c00::347
2a04:4e42:e00::347

2a04:4e42::347
2a04:4e42:200::347
2a04:4e42:400::347
2a04:4e42:600::347

151.101.129.91
151.101.193.91
151.101.1.91
151.101.65.91

IPv6

IPv4

connections

Use a specific network interface
curl --interface enp3s0 https://example.com

local port number range
curl --local-port 1000-3000 https://example.com

TCP keep alive
curl --keepalive‐time 23 https://example.com

DNS servers (when c-ares is used)
curl --dns-ipv4-addr 10.1.2.3 https://example.com

@bagder

timeouts

Maximum total time allowed to spend
curl --max-time 12.34 https://curl.se/

Never spend more than this time to connect:
curl --connect-timeout 3.14 https://remote.example.com/

“Connect time” implies DNS and everything else before transfer starts

@bagder

.netrc

a file for users to store their credentials for remote FTP servers
$HOME/.netrc

since 1978

--netrc makes curl use it

--netrc‐file [file] to use another file

for all protocols

beware: weakly specified

$ cat $HOME/.netrc
machine example.com
login daniel
password qwerty

@bagder

exit status

the numerical value curl returns back to the shell/prompt
zero for success
conveys the reason for errors
can be tested for in shell scripts

#!/bin/sh
curl https://example.com/page.html -O
res=$?
if [$res -ne 0]; then
 echo “curl command failed with $res”
fi

@bagder

$ curl -o save https://example.com/
…
curl: (23) Failure writing output to destination
$ echo $?
23

exit status
@bagder

$ man curl
…
 0 Success. The operation completed successfully according to the instructions.

 1 Unsupported protocol. This build of curl has no support for this protocol.

 2 Failed to initialize.

 3 URL malformed. The syntax was not correct.

 4 A feature or option that was needed to perform the desired request was not
 enabled or was explicitly disabled at build-time. To make curl able to do
 this, you probably need another build of libcurl.

 5 Could not resolve proxy. The given proxy host could not be resolved.

 6 Could not resolve host. The given remote host could not be resolved.

 7 Failed to connect to host.

 8 Weird server reply. The server sent data curl could not parse.

 9 FTP access denied. The server denied login or denied access to the particu‐
 lar resource or directory you wanted to reach. Most often you tried to
 change to a directory that does not exist on the server.

 10 FTP accept failed. While waiting for the server to connect back when an ac‐
 tive FTP session is used, an error code was sent over the control connection
 or similar.

 11 FTP weird PASS reply. Curl could not parse the reply sent to the PASS re‐
 quest.

 12 During an active FTP session while waiting for the server to connect back to
 curl, the timeout expired.
…

Avoid
--insecure

SCP and SFTP

SSH-based instead of TLS

curl sftp://example.com/file.zip -u user

curl scp://example.com/file.zip -u user

curl sftp://example.com/ -u user

curl sftp://example.com/~/todo.txt -u daniel

~/.ssh/known_hosts

curl sftp://example.com -u user --insecure

@bagder

Reading email

POP3 / IMAP

Reading is download

curl pop3://example.com/

curl imap://example.com/

usually with TLS (more on this a few slides later)

@bagder

server

client

Up
lo

ad

Dow
nload

Sending email

SMTP

Sending is uploading

curl -T data smtp://example.com/ -u user:password

The file needs to have all the mail headers (To, From, Subject, …)

The file needs to be “correctly” formatted

use this with TLS (more on this a few slides later)

@bagder

MQTT

Subscribe to the bedroom temperature in the subject:
curl mqtt://example.com/home/bedroom/temp

Set the kitchen dimmer:
curl -d 75 mqtt://example.com/home/kitchen/dimmer

@bagder

TFTP

Download a file from the TFTP server
curl -O tftp://localserver/file.boot

Upload a file to your TFTP server
curl -T file.boot tftp://localserver/

@bagder

TELNET

An odd child in the curl family

Session, not really download/upload
curl telnet://example.com:80

Reads input on stdin

@bagder

DICT

Dictionary lookups (downloads)
curl dict://dict.org/m:curl

curl dict://dict.org/d:heisenbug:jargon

curl dict://dict.org/d:daniel:gcide

@bagder

WebSocket

Still experimental in 8.2.1

Still not too fancy in the curl tool
curl wss://example.com/wss

@bagder

curl vs browsers

“I downloaded HTML and it looks different”

Web Browsers supports different charsets and fonts

Web Browsers do (a lot of) JavaScript

Servers might provide different content depending on client

Servers might act differently: different cookies, different redirects

Some servers try very hard to identify clients (fingerprinting)

@bagder

copy as curl

Generates a curl command line that mimics a previous transfer

Firefox, Chrome, Edge, Safari all feature this

other tools do as well

Never perfect, use as starting point

Live demo

@bagder

figure out the browsers

Additional techniques to mimic browsers:

wireshark + SSLKEYLOGFILE (more on this soon)

nc -l -p 8080 (next slide)

@bagder

h2c - headers to curl command line

nc -l -p 8080

Make your browser go to http://localhost:8080/…

See what the request looks like

https://curl.se/h2c/

Demo

@bagder

--libcurl

Generate libcurl source code from a command line

Gets a bootstrap skeleton for your program

Generates C code but often easy enough to convert

Demo

@bagder

TLS

@bagder

slide 81 of 154

enable TLS

also still referred to as SSL

necessary for transport security (unless SSH is used)

TLS verifies the peer

prevents eavesdropping and tampering

typically indicated by the URL scheme (HTTPS://)

all schemes curl supports that end with S do TLS

--ssl‐reqd for FTP IMAP POP3 SMTP LDAP

SCP and SFTP use SSH instead of TLS, similar but different

@bagder

Use TLS!

TLS versions

curl uses latest version/suitable ciphers automatically

Offers: --tlsv1.0 --tlsv1.1 --tlsv1.2 --tlsv1.3 (lowest version accepted)

--tls‐max <VERSION> (highest version accepted)

--sslv2 --sslv3 don’t work anymore due to security problems

@bagder

verifying server certificates

verifying certs is key to security

CAs sign certificates

curl trusts CAs

intermediate certificates

CA store as file or “native”

--cacert

--insecure (-k)

https://curl.se/docs/caextract.html

@bagder

Avoid
-k

OCSP stapling

certificate revocation is problematic

a standard for checking the revocation status

curl --cert-status https://example.com/

@bagder

client certificates

often called “mutual authentication”

prove to the server that the client is “legitimate”

curl --cert mycert:mypassword https://example.com

curl --cert mycert:mypassword --key mykey https://example.com

@bagder

ciphers

TLS negotiates what ciphers to use

--ciphers

--tls13‐ciphers

--proxy‐ciphers

Post Quantum

https://curl.se/docs/ssl-ciphers.html

@bagderAES128-SHA256

AES256-SHA256

AES128-GCM-SHA256

AES256-GCM-SHA384

DH-RSA-AES128-SHA256

DH-RSA-AES256-SHA256

DH-RSA-AES128-GCM-SHA256

DH-RSA-AES256-GCM-SHA384

DH-DSS-AES128-SHA256

DH-DSS-AES256-SHA256

DH-DSS-AES128-GCM-SHA256

DH-DSS-AES256-GCM-SHA384

DHE-RSA-AES128-SHA256

DHE-RSA-AES256-SHA256

DHE-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384

DHE-DSS-AES128-SHA256

DHE-DSS-AES256-SHA256

DHE-DSS-AES128-GCM-SHA256

DHE-DSS-AES256-GCM-SHA384

ECDHE-RSA-AES128-SHA256

ECDHE-RSA-AES256-SHA384

ECDHE-RSA-AES128-GCM-SHA256

ECDHE-RSA-AES256-GCM-SHA384

ECDHE-ECDSA-AES128-SHA256

ECDHE-ECDSA-AES256-SHA384

ECDHE-ECDSA-AES128-GCM-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384

ADH-AES128-SHA256

ADH-AES256-SHA256

ADH-AES128-GCM-SHA256

ADH-AES256-GCM-SHA384

AES128-CCM AES256-CCM

DHE-RSA-AES128-CCM

DHE-RSA-AES256-CCM

AES128-CCM8

AES256-CCM8

DHE-RSA-AES128-CCM8

DHE-RSA-AES256-CCM8

ECDHE-ECDSA-AES128-CCM

ECDHE-ECDSA-AES256-CCM

ECDHE-ECDSA-AES128-CCM8

ECDHE-ECDSA-AES256-CCM8

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256

TLS_AES_128_CCM_8_SHA256

TLS_AES_128_CCM_SHA256

TLS backends

curl can get built with different TLS backends

different backends might..

- behave slightly different

- have different CA stores

- have different feature sets

- work on different platforms

OpenSSL is the most commonly used TLS library for curl

@bagder

BearSSL

AWS-LC

GnuTLS

mbedSSL

OpenSSL

Schannel

wolfSSL

Secure Transport

rustls

BoringSSL

libressl

AmiSSL

SSLKEYLOGFILE

TLS transfers are encrypted

encrypted transfers can’t be snooped upon

unless we can extract the secrets in run-time

set the environment variable named SSLKEYLOGFILE to a file name

tell wireshark to read secrets from that file name

then run curl as normal

also works with browsers

@bagder

SSLKEYLOGFILE
@bagder

SSLKEYLOGFILE
@bagder

Proxies

@bagder

slide 92 of 154

a proxy is an intermediary

a server application that acts as an intermediary between a client requesting a
resource and the server providing that resource

proxy websiteNetwork A Network Bclient

@bagder

discover your proxy

a proxy is a type + host + port number

curl does not auto-detect it

check your browser network settings

check your system network settings

environment variables like http_proxy (more on this soon)

@bagder

PAC - Proxy Auto-Configuration

JavaScript that determines which proxy to use for a given URL

curl does not support PAC

real-life PACs are all from simple to super complicated

when too complicated for manual inspection: check behavior

@bagder

Captive portals

Not actual proxies

Network equipment normally blocking the whole machine

They also affect curl

When unlocked, curl typically also works through

@bagder

Proxy types

There are different proxy types

HTTP vs SOCKS

HTTP / HTTPS / HTTPS-H2 / SOCKS4 / SOCKS4a / SOCKS5 / SOCKS5h

use type as URL scheme when set with --proxy

--preproxy allows both SOCKS and HTTP(S) proxy

TOR is SOCKS

forward proxy and reverse proxy

@bagder

HTTPS proxy
HTTPS to the proxy, anything over it

HTTPS authenticates the proxy: 🮱

curl supports HTTP/1 and HTTP/2 over HTTPS proxy

Prevents users on network A from eavesdropping

Features its own set of TLS options

--proxy-*, like --proxy-insecure and --proxy-tlsv1.3

proxy websiteNetwork A
HTTPS

Network Bclient

@bagder

MITM proxy

Sometimes used for debugging

Sometimes used for surveillance

The proxy terminates TLS and can snoop on data

MITM proxies present a certificate from a CA normally not trusted

curl must be told to trust that CA to allow this stunt

blindly trusting a middleman is a recipe for disasters

@bagder

Avoid

proxy websiteNetwork A Network Bclient

Proxy authentication

Proxies might require authentication

curl supports numerous proxy auth methods

-U, --proxy-user <user:password>

--socks5‐basic

--socks5‐gssapi

--proxy-basic

--proxy-digest

--proxy-negotiate

--proxy-ntlm

@bagder

Proxy environment variables

[scheme]_proxy

curl https://example.com/ HTTPS_PROXY
curl ftp://example.com/ FTP_PROXY
curl http://example.com/ http_proxy

ALL_PROXY

NO_PROXY

@bagder

Proxy headers

--proxy-header vs --header

proxy websiteNetwork A Network Bclient

@bagder

HTTP

@bagder

slide 103 of 154

HTTP protocol basics

HTTP/1 - HTTP/2 - HTTP/3

HTTPS is HTTP + TLS

Name resolve + TCP+TLS/QUIC

Request - Response

Method - verbs

GET /index.html HTTP/1.1
User-agent: curl/2000
Host: example.com

HTTP/1.1 200 OK
Server: example-server/1.1
Content-Length: 5
Content-Type: plain/text

hello

POST /index HTTP/1.1
Host: example.com
User-agent: curl/2000
Content-Length: 5

hello

HEAD /index.html HTTP/1.1
User-agent: curl/2000
Host: example.com

PUT /index HTTP/1.1
Host: example.com
User-agent: curl/2000
Content-Length: 5

hello

@bagder

HTTP Method

Sometimes called “verb”

GET

HEAD (-I)

POST (-d or -F)

PUT (-T)

anything

methods are sometimes abused

-X [whatever]

Avoid -X

@bagder

HTTP headers in terminal

bold header names

“linkified” Location: URLs

@bagder

$ curl -I curl.se
HTTP/1.1 301 Moved Permanently
Connection: close
Content-Length: 0
Server: Varnish
Retry-After: 0
Location: https://curl.se/
Accept-Ranges: bytes
Date: Fri, 25 Aug 2023 18:33:12 GMT
Via: 1.1 varnish
X-Served-By: cache-qpg1235-QPG
X-Cache: HIT
X-Cache-Hits: 0
X-Timer: S1692988392.312085,VS0,VE0
alt-svc: h3=":443";ma=86400,h3-29=":443";ma=86400,h3-27=":443";ma=86400

HTTP response code

HTTP “success”

200 OK

404 File not found

curl does not care

-f makes curl care

-w ‘%{response_code}’

HTTP/1.1 200 OK
Server: example-server/1.1
Content-Length: 5
Content-Type: plain/text

hello

@bagder

HTTP response headers

-v or -I to see them

or -i

describes the body or the transfer

save them with -D [filename]

looks like HTTP/1 even when other HTTP versions are used

HTTP/1.1 200 OK
Server: example-server/1.1
Content-Length: 5
Content-Type: plain/text

hello

@bagder

HTTP response bodies

The “payload”

Content-Length

HTTP/1.1 chunked-encoding

HTTP/2 and HTTP/3 have distinct end of data markers

--compressed

store to file with -o [file] or -O

HTTP/1.1 200 OK
Server: example-server/1.1
Content-Length: 5
Content-Type: plain/text

hello

@bagder

HTTP authentication

web logins are often done with cookies, we get to those later

if HTTP based, returns 401 for server auth needed

returns 407 for proxy auth

WWW-Authenticate:

Basic, Digest, NTLM, Negotiate, etc

-u [user]:[password]

--anyauth

--basic, --digest, --ntlm, --negotiate

@bagder

HTTP ranges

Ask for a piece of a remote resource

curl --range 500-999 https://example.com/file.txt

server may ignore the ask

curl’s -C [where] resumes the transfer at that index

@bagder

HTTP versions

curl supports HTTP/0.9, HTTP/1.0, HTTP/1.1, HTTP/2 and HTTP/3

Generally: you don’t need to care

Different over the wire, made to look similar for users

HTTP/0.9 must be enabled with --http0.9

HTTP/1.0 with --http1.0

HTTP/1.1 is a general default or --http1.1

HTTP/2 is default over HTTPS, or asked for with --http2

HTTP/3 is experimental, asked for with --http3

@bagder

HTTP versions

What version does the server support?

@bagder

curl -sI https://curl.se -o/dev/null -w '%{http_version}\n'

curl -sI --http3 https://curl.se -o/dev/null -w '%{http_version}\n'

HTTP time based conditions

do the transfer only if…
The remote resource is newer:
curl --time-cond “Wed 01 Sep 2021 12:18:00” https://example.com/file

The remote resource is older:
curl --time-cond “-Wed 01 Sep 2021 12:18:00” https://example.com/file

Newer than the local file:
curl --time-cond file https://example.com/file

Set the remote date on the local file:
curl -R -O https://example.com/file

@bagder

HTTP etags

do the transfer only if…
The remote resource is “different”
curl --etag-save remember -O https://example.com/file
curl --etag-compare remember -O https://example.com/file

Both can be used at once for convenient updates:
curl --etag-save remember --etag-compare remember -O
https://example.com/file

@bagder

HTTPS

HTTPS is HTTP with added TLS for security

HTTPS:// instead of HTTP:// should be the only difference

curl negotiates the latest TLS version + suitable cipher

HTTPS:// tries HTTP/2 by default, HTTP:// does HTTP/1.1

HTTP/3 will only be done for HTTPS:// (more on this soon)

@bagder

HTTP POST: simple

pass any data to a HTTP(S) server
curl -d 'name=admin&shoesize=12' https://example.com/

curl -d name=admin -d shoesize=12 https://example.com/

curl -d @filename http://example.com

curl --data-raw '@string' https://example.com

curl --data-binary @filename https://example.com

@bagder

HTTP POST: content-type

-d / –data defaults to
Content-Type: application/x-www-form-urlencoded

curl -d dust -H 'Content-Type: stuff/dream' https://example.com

@bagder

HTTP POST: JSON

curl --json ‘{“name”: “daniel”}’ https://example.com
curl --json @object.json https://example.com

Sets Content-Type: application/json and Accept: application/json

Create JSON easily
jo -p name=jo n=17 parser=false | curl --json @- https://example.com/
Receive/parson JSON easily
curl --json '{"tool": "curl"}' https://example.com/ | jq
curl + jo + jq
jo -p name=jo n=17 | curl --json @- https://example.com/ | jq

@bagder

HTTP POST: URL encoding

--data-urlencode helps URL encode data to send
curl --data-urlencode "name=John Doe (Junior)" http://example.com
sends name=John%20Doe%20%28Junior%29

-data-urlencode [content] where content is…

anything URL encode the content
=anything URL encode the content (leave out the ‘=’)
any=thing Send as “any=[URL encoded thing]”
@anything Read content from file, URL encode and use
any@thing Send as “any=[URL encoded file contents]”

@bagder

HTTP POST: convert to GET (query)

curl -d name=admin -d shoesize=12 https://example.com/
but do it as a GET instead
curl -d name=admin -d shoesize=12 https://example.com/ --get

GET /?name=admin&shoesize=12 HTTP/1.1
User-agent: curl/8.2.1
Host: example.com

we recommend using --url-query instead!

@bagder

HTTP POST: Expect 100-continue

For HTTP/1.1 only

A request header used by curl when POST or PUT > 1 megabyte

Meant to avoid sending lots of data if server does not want it

Server responding 100 means: 👍 - go ahead

If it bothers you, disable with curl -H Expect: https://example.com/

Commonly ignored by servers, leading to wasted waiting time

@bagder

HTTP POST: chunked

Sends data without specifying the size up front

For HTTP/1.1 only
curl -H "Transfer-Encoding: chunked" -d @file http://example.com

@bagder

HTTP POST: <form>

The HTML <form> tag is “filled in” with a POST

type=hidden fields as well

-d name1=var1 -d name2=var2 -d name3=var3 …

The action=[here] identifies where to send the POST

“Copy as curl” is your friend

@bagder

HTTP multipart formpost

This is a POST sending data in a special multipart format
Content-Type multipart/form-data

The data is sent as a series of “parts”, one or more

Each part has a name, separate headers, file name and more

Each part is separated by a “mime boundary”

@bagder

HTTP multipart formpost

curl -F [content] adds one part per instance

Use as many -F as you like

Insert plain text content -F “name=Daniel Stenberg”

Insert content from a file -F name=<file.txt

Insert a file as an “upload” -F name=@file.jpg

Insert a file, different file name -F name=@file.jpg;filename=fake.jpg

Set a custom content-type: -F name=@file.jpg;type=image/myown
<form action="submit" method="post" enctype="multipart/form-data">

@bagder

HTTP -d or -F

Both sends HTTP POST

Both works over every HTTP version

Both can “fill in” HTML <form>

What data do you need to send?

Very rarely can the client decide. Do what the server expects!

@bagder

HTTP redirects

The response you want is … over there!
HTTP/1.1 301
Server: example-server/1.1
Location: https://example.com/over-here.html

hello

A 30X response code + Location: header

tell curl to “follow” with --location (-L)
curl -L curl.se

curl -L curl.se --max-redirs 7

The numeric code defines method in redirected-to request
--location-trusted

Avoid -X

@bagder

HTTP modify the request

Sensible and basic by default

You as a user add the bells and whistles

Modify the method with --request

Add/change/remove/blank headers with --header
curl -H "curl-master: very-soon" http://example.com/

curl -H "Host: test.example" http://example.com/

curl -H "User-agent:" http://example.com/

curl -H "User-agent;" http://example.com/

@bagder

HTTP modify the request

The request “target” is made from the URL path + query
GET /user/profile?shoesize=12 HTTP/1.1
User-agent: curl/8.2.1
Host: example.com

curl -X OPTIONS --request-target "*" http://example.com/

Convenient shortcuts:
--user-agent [string]

--referer [URL] (yes spelled wrong)

Remember “copy as curl”

@bagder

HTTP PUT

The “upload file” of HTTP (and others)
curl -T localfile https://example.com/destination/replacement

curl -T - https://example.com/destination/replacement

curl -T file https://example.com

curl -T "img[1-1000].png" http://example.com/images/

curl --upload-file "{file1,file2}" https://example.com

curl -d "data to PUT" -X PUT http://example.com/new/resource/file

@bagder

HTTP cookies: an explainer

key/value pairs that a client stores on the behalf of a server

sent back in subsequent requests

only when the cookie properties match

each cookie has an expiration date - or end of “session”

A session typically ends when user closes browser

When running curl command lines, when do you close the browser?

@bagder

HTTP cookies: send some

you can tell curl to send specific cookies name + values
curl -b “name=daniel;talks=alot” https://example.com

rarely what you want

Often what “copy as curl” will give you

@bagder

HTTP cookies: start the engine

curl ignores cookies by default
needs the cookie engine enabled first

specify a file to read from or use a blank string
curl -b “” https://example.com

More practically combined with redirect follows
curl -L -b “” https://example.com

The cookie engine keeps the cookies in memory
it forgets cookies that expire
only sends cookies according to the rules

@bagder

HTTP cookies: cookie jar

Maybe also combined with saving a cookie jar
Writes the in-memory cookies to the given file at exit
curl -L -b “” -c cookies.txt https://example.com

Read from and write to the cookie jar (can be different files)
curl -L -b cookies.txt -c cookies.txt https://example.com

The cookie jar is a readable text file

The cookie jar uses the “netscape cookie format”

Also includes “session cookies” because … sessions

@bagder

HTTP cookies: session

curl does not know when a “session” ends

you need to say when a new cookie session starts
--junk‐session‐cookies

curl -J -b cookies.txt https://example.com

@bagder

HTTP version 2 changed how data is sent over the wire

curl hides those differences from users

curl tries to negotiate HTTP/2 for all HTTPS transfers

with --http2 you can ask for HTTP/2 for HTTP:// transfers

With HTTP/2, curl can do multiplexed transfers with -Z

@bagder

HTTP version 3 changed how data is sent over the wire - again

HTTP/3 is done over QUIC, a new transport protocol

QUIC replaces TCP + TLS, and runs over UDP

curl hides protocol differences from users

HTTP/3 is experimental in curl

HTTP/3 is only for HTTPS, there is no clear text version

with --http3 you can ask curl to attempt HTTP/3

--http3 races HTTP/3 against HTTP/1+2 and picks the winner

With HTTP/3, curl can do multiplexed transfers with -Z

@bagder

@bagder

racing

curl.se

client

curl.se has address 151.101.129.91
curl.se has address 151.101.193.91
curl.se has address 151.101.1.91
curl.se has address 151.101.65.91
curl.se has IPv6 address 2a04:4e42:800::347
curl.se has IPv6 address 2a04:4e42:a00::347
curl.se has IPv6 address 2a04:4e42:c00::347
curl.se has IPv6 address 2a04:4e42:e00::347
curl.se has IPv6 address 2a04:4e42::347
curl.se has IPv6 address 2a04:4e42:200::347
curl.se has IPv6 address 2a04:4e42:400::347
curl.se has IPv6 address 2a04:4e42:600::347

DNS

2a04:4e42:800::347
2a04:4e42:a00::347
2a04:4e42:c00::347
2a04:4e42:e00::347

2a04:4e42::347
2a04:4e42:200::347
2a04:4e42:400::347
2a04:4e42:600::347

151.101.129.91
151.101.193.91
151.101.1.91
151.101.65.91

h2 IPv6

h2 IPv4

h3 IPv4

h3 IPv6

HTTP alt-svc

server tells client: there is one or more alternatives at "another place"

(possibly using a different HTTP version)

The Alt-Svc: response header

Each entry has an expiry time

Only recognized over HTTPS

curl can save alt-svc alternatives

curl can use previously saved alt-svc alternatives
curl --alt-svc altcache.txt https://example.com/

The alt-svc cache is a text based readable file

@bagder

HTTP HSTS

HSTS - HTTP Strict Transport Security

Lets an HTTPS server declare that clients should automatically interact with this

host name using only HTTPS going forward

The Strict-Transport-Security: response header

Only recognized over HTTPS

Each entry has an expiry time

curl can save HSTS data

curl can use previously saved HSTS data
curl --hsts hsts.txt http://example.com/

The HSTS cache is a text based readable file

@bagder

FTP

@bagder

slide 142 of 154

FTP(S) is not SFTP

They are two completely different protocols, both supported by curl

@bagder

FTP uses two connections

With FTP, a second connection is setup for the data transfer

This second connection adds complications for firewalls and more

The 2nd connection is server-to-client (active) or client-to-server (passive)

Passive is default (--ftp‐pasv)

Enable active mode with --ftp‐port (-P)

@bagder

ftp://curl.se

client

control connection

passive

active

FTP authentication

by default: user: anonymous password: ftp@example.com

-u user:password

@bagder

FTP directory listing

FTP can list the contents of a remote directory

curl does not know what is a directory or not

tell curl with a trailing slash
curl ftp://example.com/pub/linux/

The list format is not standardized 🙁
show only file names with --list-only (-l)
curl --list-only ftp://example.com/pub/linux/

@bagder

FTP upload

curl -T is for upload

normally requires -u to be allowed
curl -T localfile ftp://example.com/pub/linux/newfilename

curl -T localfile ftp://example.com/pub/linux/

append to remote file
curl --append -T localfile ftp://example.com/pub/linux/

Create dir on the server if missing:
curl --ftp-create-dirs -T localfile ftp://example.com/pub/linux/

@bagder

FTPS is FTP with TLS

add --ssl-reqd to the command line, keep ftp:// in the URL

use FTPS:// if using (rare) implicit TLS

FTPS is even more problematic for stateful firewalls

@bagder

Future

@bagder

slide 149 of 154

How to dig deeper

curl is the accumulated results and experiences from 25 years of improvements

man curl

Everything curl

source code

ask the community!

@bagder

https://everything.curl.dev/

@bagder

Going next?

curl is 25 years old
curl has been growing and developed its entire lifetime
curl development speed is increasing
the Internet does not stop or slow down
protocols and new ways of doing Internet transfers keep popping up
new versions, new systems, new concepts and new ideas keep coming
there is now slowdown in sight
reasonably, curl will keep develop
curl will keep expanding, get new features, get taught new things
we, the community, make it do what we think it should do
you can affect what’s next for curl

@bagder

@bagder@bagder

You can help!

Daniel Stenberg
@bagder@mastodon.social
https://daniel.haxx.se/

Thank you!

Questions?

@bagder

