Category Archives: Security

Lesser HTTPS for non-browsers

An HTTPS client needs to do a whole lot of checks to make sure that the remote host is fine to communicate with to maintain the proper high security levels.

In this blog post, I will explain why and how the entire HTTPS ecosystem relies on the browsers to be good and strict and thanks to that, the rest of the HTTPS clients can get away with being much more lenient. And in fact that is good, because the browsers don’t help the rest of the ecosystem very much to do good verification at that same level.

Let me me illustrate with some examples.

CA certs

The server’s certificate must have been signed by a trusted CA (Certificate Authority). A client then needs the certificates from all the CAs that are trusted. Who’s a trusted CA and how would a client get their certs to use for verification?

You can say that you trust the same set of CAs that your operating system vendor trusts (which I’ve always thought is a bit of a stretch but hey, I can very well understand the convenience in this). If you want to do this as an HTTPS client you need to use native APIs in Windows or macOS, or you need to figure out where the cert bundle is stored if you’re using Linux.

If you’re not using the native libraries on windows and macOS or if you can’t find the bundle in your Linux distribution, or you’re in one of a large amount of other setups where you can’t use someone else’s bundle, then you need to gather this list by yourself.

How on earth would you gather a list of hundreds of CA certs that are used for the popular web sites on the net of today? Stand on someone else’s shoulders and use what they’ve done? Yeps, and conveniently enough Mozilla has such a bundle that is licensed to allow others to use it…

Mozilla doesn’t offer the set of CA certs in a format that anyone else can use really, which is the primary reason why we offer Mozilla’s cert bundle converted to PEM format on the curl web site. The other parties that collect CA certs at scale (Microsoft for Windows, Apple for macOS, etc) do even less.

Before you ask, Google doesn’t maintain their own list for Chrome. They piggyback the CA store provided on the operating system it runs on. (Update: Google maintains its own list for Android/Chrome OS.)

Further constraints

But the browsers, including Firefox, Chrome, Edge and Safari all add additional constraints beyond that CA cert store, on what server certificates they consider to be fine and okay. They blacklist specific fingerprints, they set a last allowed date for certain CA providers to offer certificates for servers and more.

These additional constraints, or additional rules if you want, are never exported nor exposed to the world in ways that are easy for anyone to mimic (in other ways than that everyone of course can implement the same code logic in their ends). They’re done in code and they’re really hard for anyone not a browser to implement and keep up with.

This makes every non-browser HTTPS client susceptible to okaying certificates that have already been deemed not OK by security experts at the browser vendors. And in comparison, not many HTTPS clients can compare or stack up the amount of client-side TLS and security expertise that the browser developers can.

HSTS preload

HTTP Strict Transfer Security is a way for sites to tell clients that they are to be accessed over HTTPS only for a specified time into the future, and plain HTTP should then not be used for the duration of this rule. This setup removes the Man-In-The-Middle (MITM) risk on subsequent accesses for sites that may still get linked to via HTTP:// URLs or by users entering the web site names directly into the address bars and so on.

The browsers have a “HSTS preload list” which is a list of sites that people have submitted and they are HSTS sites that basically never time out and always will be accessed over HTTPS only. Forever. No risk for MITM even in the first access to these sites.

There are no such HSTS preload lists being provided for non-browser HTTPS clients so there’s no easy way for non-browsers to avoid the first access MITM even for these class of forever-on-HTTPS sites.

Update: The Chromium HSTS preload list is available in a JSON format.

SHA-1

I’m sure you’ve heard about the deprecation of SHA-1 as a certificate hashing algorithm and how the browsers won’t accept server certificates using this starting at some cut off date.

I’m not aware of any non-browser HTTPS client that makes this check. For services, API providers and others don’t serve “normal browsers” they can all continue to play SHA-1 certificates well into 2017 without tears or pain. Another ecosystem detail we rely on the browsers to fix for us since most of these providers want to work with browsers as well…

This isn’t really something that is magic or would be terribly hard for non-browsers to do, its just that it will make some users suddenly get errors for their otherwise working setups and that takes a firm attitude from the software provider that is hard to maintain. And you’d have to introduce your own cut-off date that you’d have to fight with your users about! ūüėČ

TLS is hard to get right

TLS and HTTPS are full of tricky areas and dusty corners that are hard to get right. The more we can share tricks and rules the better it is for everyone.

I think the browser vendors could do much better to help the rest of the ecosystem. By making their meta data available to us in sensible formats mostly. For the good of the Internet.

Disclaimer

Yes I work for Mozilla which makes Firefox. A vendor and a browser that I write about above. I’ve been communicating internally about some of these issues already, but I’m otherwise not involved in those parts of Firefox.

6 hours of bliss

I sent out the release announcement for curl 7.52.0 exactly 07:59 in the morning of December 21, 2016. A Wednesday. We typically  release curl on Wednesdays out of old habit. It is a good release day.

curl 7.52.0 was just as any other release. Perhaps with a slightly larger set of new features than what’s typical for us. We introduce TLS 1.3 support, we now provide HTTPS-proxy support and the command line tool has this option called –fail-early that I think users will start to appreciate once they start to discover it. We also¬† announced three fixed security vulnerabilities. And some other good things.

I pushed the code to git, signed and uploaded the tarballs, I updated the info on the web site and I sent off that release announcement email and I felt good. Release-time good. That short feeling of relief and starting over on a new slate that I often experience these release days. Release days make me happy.

Any bets?

It is not unusual for someone to find a bug really fast after a release has shipped. As I was feeling good, I had to joke in the #curl IRC channel (42 minutes after that email):

08:41 <bagder> any bets on when the first bug report on the new release shows up? =)

Hours passed and maybe, just maybe there was not going to be any quick bugs filed on this release?

But of course. I wouldn’t write this blog post if it all had been nice and dandy. At 14:03, I got the email. 6 hours and 4 minutes since I wrote the 7.52.0 announcement email.

The email was addressed to the curl project security email list and included a very short patch and explanation how the existing code is wrong and needs “this fix” to work correctly. And it was entirely correct!

Now I didn’t feel that sense of happiness anymore. For some reason it was now completely gone and instead I felt something that involved sensations like rage, embarrassment and general tiredness. How the [beep] could this slip through like this?

I’ve done releases in the past that were broken to various extents but this is a sort of a new record and an unprecedented event. Enough time had passed that I couldn’t just yank the package from the download page either. I had to take it through the correct procedures.

What happened?

As part of a general code cleanup during this last development round, I changed all the internals to use a proper internal API to get random data and if libcurl is built with a TLS library it uses its provided API to get secure and safe random data. As a move to improve our use of random internally. We use this internal API for getting the nonce in authentication mechanisms such as Digest and NTLM and also for generating the boundary string in HTTP multipart formposts and more. (It is not used for any TLS or SSH level protocol stuff though.)

I did the largest part of the random overhaul of this in commit f682156a4f, just a little over a month ago.

Of course I made sure that all test cases kept working and there were no valgrind reports or anything, the code didn’t cause any compiler warnings. It did not generate any reports in the many clang-analyzer or Coverity static code analyzer runs we’ve done since. We run clang-analyzer daily and Coverity perhaps weekly.

But there’s a valgrind report just here!

Kamil Dudka, who sent the 14:03 email, got a valgrind error and that’s what set him off – but how come he got that and I didn’t?

The explanation consists of the following two conditions that together worked to hide the problem for us quite successfully:

  1. I (and I suppose several of the other curl hackers) usually build curl and libcurl “debug enabled”. This allows me to run more tests, do more diagnostics and debug it easier when I run into problems. It also provides a system with “fake random” so that we can actually verify that functions that otherwise use real random values generate the correct output when given a known random value… and yeah, this debug system prevented valgrind from detecting any problem!
  2. In the curl test suite we once had a problem with valgrind generating reports on third party libraries etc which then ended up as false positives. We then introduced a “valgrind report parser” that would detect if the report concerns curl or something else. It turns out this parser doesn’t detect the errors if curl is compiled without the cc’s -g command line option. And of course… curl and libcurl both build without -g by default!

The patch?

The vulnerable function basically uses this simple prototype. It is meant to get an “int” worth of random value stored in the buffer ‘rnd’ points to. That’s 4 bytes.

randit(struct Curl_easy *data, unsigned int *rnd)

But due to circumstances I can’t explain on anything other than my sloppy programming, I managed to write the function store random value in the actual pointer instead of the buffer it points to. So when the function returns, there’s nothing stored in the buffer. No 4 bytes of random. Just the uninitialized value of whatever happened to be there, on the stack.

The patch that fixes this problem looks like this (with some names shortened to simplify but keep the idea):

- res = random(data, (char *)&rnd, sizeof(rnd));
+ res = random(data, (char *)rnd, sizeof(*rnd));

So yeah. I introduced this security flaw in 7.52.0. We had it fixed in 7.52.1, released roughly 48 hours later.

(I really do not need comments on what other languages that wouldn’t have allowed this mistake or otherwise would’ve brought us world peace a long time ago.)

Make it not happen again

The primary way to make this same mistake not happen again easily, is that I’m removing the valgrind report parsing function from the test suite and we will now instead assume that valgrind reports will be legitimate and if not, work on suppressing the false positives in a better way.

References

This flaw is officially known as CVE-2016-9594

The real commit that fixed this problem is here, or as stand-alone patch.

The full security advisory for this flaw is here: https://curl.haxx.se/docs/adv_20161223.html

Facepalm photo by Alex E. Proimos.

xkcd: 221

 

curl security audit

“the overall impression of the state of security and robustness
of the cURL library was positive.”

I asked for, and we were granted a security audit of curl from the Mozilla Secure Open Source program a while ago. This was done by Mozilla getting a 3rd party company involved to do the job and footing the bill for it. The auditing company is called Cure53.

good_curl_logoI applied for the security audit because I feel that we’ve had some security related issues lately and I’ve had the feeling that we might be missing something so it would be really good to get some experts’ eyes on the code. Also, as curl is one of the most used software components in the world a serious problem in curl could have a serious impact on tools, devices and applications everywhere. We don’t want that to happen.

Scans and tests and all

We run static analyzers on the code frequently with a zero warnings tolerance. The daily clang-analyzer scan hasn’t found a problem in a long time and the Coverity once-every-few-weeks occasionally finds something suspicious but we always fix those immediately.

We have  thousands of tests and unit tests that we run non-stop on the code on multiple platforms running multiple build combinations. We also use valgrind when running tests to verify memory use and check for potential memory leaks.

Secrecy

The audit itself. The report and the work on fixing the issues were all done on closed mailing lists without revealing to the world what was really going on. All as our fine security process describes.

There are several downsides with fixing things secretly. One of the primary ones is that we get much fewer eyes on the fixes and there aren’t that many people involved when discussing solutions or approaches to the issues at hand. Another is that our test infrastructure is made for and runs only public code so the code can’t really be fully tested until it is merged into the public git repository.

The report

We got the report on September 23, 2016 and it certainly gave us a lot of work.

The audit report has now been made public and is a very interesting work if you’re into security, C code and curl hacking. I find the report very clear, well written and it spells out each problem very accurately and even shows proof of concept code snippets and exploit examples to drive the points home.

Quoted from the report intro:

As for the approach, the test was rooted in the public availability of the source code belonging to the cURL software and the investigation involved five testers of the Cure53 team. The tool was tested over the course of twenty days in August and September of 2016 and main efforts were focused on examining cURL 7.50.1. and later versions of cURL. It has to be noted that rather than employ fuzzing or similar approaches to validate the robustness of the build of the application and library, the latter goal was pursued through a classic source code audit. Sources covering authentication, various protocols, and, partly, SSL/TLS, were analyzed in considerable detail. A rationale behind this type of scoping pointed to these parts of the cURL tool that were most likely to be prone and exposed to real-life attack scenarios. Rounding up the methodology of the classic code audit, Cure53 benefited from certain tools, which included ASAN targeted with detecting memory errors, as well as Helgrind, which was tasked with pinpointing synchronization errors with the threading model.

They identified no less than twenty-three (23) potential problems in the code, out of which nine were deemed security vulnerabilities. But I’d also like to emphasize that they did also actually say this:

At the same time, the overall impression of the state of security and robustness of the cURL library was positive.

Resolving problems

In the curl security team we decided to downgrade one of the 9 vulnerabilities to a “plain bug” since the required attack scenario was very complicated and the risk deemed small, and two of the issues we squashed into treating them as a single one. That left us with 7 security vulnerabilities. Whoa, that’s a lot. The largest amount we’ve ever fixed in a single release before was 4.

I consider handling security issues in the project to be one of my most important tasks; pretty much all other jobs are down-prioritized in comparison. So with a large queue of security work, a lot of bug fixing and work on features basically had to halt.

You can get a fairly detailed description of our work on fixing the issues in the fix and validation log. The report, the log and the advisories we’ve already posted should cover enough details about these problems and associated fixes that I don’t feel a need to write about them much further.

More problems

Just because we got our hands full with an audit report doesn’t mean that the world stops, right? While working on the issues one by one to have them fixed we also ended up getting an additional 4 security issues to add to the set, by three independent individuals.

All these issues gave me a really busy period and it felt great when we finally shipped 7.51.0 and announced all those eleven fixes to the world and I could get a short period of relief until the next tsunami hits.

curl and TLS 1.3

Draft 18 of the TLS version 1.3 spec was publiSSL padlockshed at the end of October 2016.

Already now, both Firefox and Chrome have test versions out with TLS 1.3 enabled. Firefox 52 will have it by default, and while Chrome will ship it, I couldn’t figure out exactly when we can expect it to be there by default.

Over the last few days we’ve merged TLS 1.3 support to curl, primarily in this commit by Kamil Dudka. Both the command line tool and libcurl will negotiate TLS 1.3 in the next version (7.52.0 – planned release date at the end of December 2016) if built with a TLS library that supports it and told to do it by the user.

The two current TLS libraries that will speak TLS 1.3 when built with curl right now is NSS and BoringSSL. The plan is to gradually adjust curl over time as the other libraries start to support 1.3 as well. As always we will appreciate your help in making this happen!

Right now, there’s also the minor flux in that servers and clients may end up running implementations of different draft versions of the TLS spec which contributes to a layer of extra fun!

Three TLS current 1.3 test servers to play with: https://enabled.tls13.com/ , https://www.allizom.org/ and https://tls13.crypto.mozilla.org/. I doubt any of these will give you any guarantees of functionality.

TLS 1.3 offers a few new features that allow clients such as curl to do subsequent TLS connections much faster, with only 1 or even 0 RTTs, but curl has no code for any of those features yet.

a single byte write opened a root execution exploit

Thursday, September 22nd 2016. An email popped up in my inbox.

Subject: ares_create_query OOB write

As one of the maintainers of the c-ares project I’m receiving mails for suspected security problems in c-ares and this was such a one. In this case, the email with said subject came from an individual who had reported a ChromeOS exploit to Google.

It turned out that this particular c-ares flaw was one important step in a sequence of necessary procedures that when followed could let the user execute code on ChromeOS from JavaScript – as the root user. I suspect that is pretty much the worst possible exploit of ChromeOS that can be done. I presume the reporter will get a fair amount of bug bounty reward for this.

The setup and explanation on how this was accomplished is very complicated and I am deeply impressed by how this was figured out, tracked down and eventually exploited in a repeatable fashion. But bear with me. Here comes a very simplified explanation on how a single byte buffer overwrite with a fixed value could end up aiding running exploit code as root.

The main Google bug for this problem is still not open since they still have pending mitigations to perform, but since the c-ares issue has been fixed I’ve been told that it is fine to talk about this publicly.

c-ares writes a 1 outside its buffer

c-ares has a function called ares_create_query. It was added in 1.10 (released in May 2013) as an updated version of the older function ares_mkquery. This detail is mostly interesting because Google uses an older version than 1.10 of c-ares so in their case the flaw is in the old function. This is the two functions that contain the problem we’re discussing today. It used to be in the ares_mkquery function but was moved over to ares_create_query a few years ago (and the new function got an additional argument). The code was mostly unchanged in the move so the bug was just carried over. This bug was actually already present in the original ares project that I forked and created c-ares from, back in October 2003. It just took this long for someone to figure it out and report it!

I won’t bore you with exactly what these functions do, but we can stick to the simple fact that they take a name string as input, allocate a memory area for the outgoing packet with DNS protocol data and return that newly allocated memory area and its length.

Due to a logic mistake in the function, you could trick the function to allocate a too short buffer by passing in a string with an escaped trailing dot. An input string like “one.two.three\.” would then cause the allocated memory area to be one byte too small and the last byte would be written outside of the allocated memory area. A buffer overflow if you want. The single byte written outside of the memory area is most commonly a 1 due to how the DNS protocol data is laid out in that packet.

This flaw was given the name CVE-2016-5180 and was fixed and announced to the world in the end of September 2016 when c-ares 1.12.0 shipped. The actual commit that fixed it is here.

What to do with a 1?

Ok, so a function can be made to write a single byte to the value of 1 outside of its allocated buffer. How do you turn that into your advantage?

The Redhat security team deemed this problem to be of “Moderate security impact” so they clearly do not think you can do a lot of harm with it. But behold, with the right amount of imagination and luck you certainly can!

Back to ChromeOS we go.

First, we need to know that ChromeOS runs an internal HTTP proxy which is very liberal in what it accepts – this is the software that uses c-ares. This proxy is a key component that the attacker needed to tickle really badly. So by figuring out how you can send the correctly crafted request to the proxy, it would send the right string to c-ares and write a 1 outside its heap buffer.

ChromeOS uses dlmalloc for managing the heap memory. Each time the program allocates memory, it will get a pointer back to the request memory region, and dlmalloc will put a small header of its own just before that memory region for its own purpose. If you ask for N bytes with malloc, dlmalloc will use ( header size + N ) and return the pointer to the N bytes the application asked for. Like this:

malloced-area

With a series of cleverly crafted HTTP requests of various sizes to the proxy, the attacker managed to create a hole of freed memory where he then reliably makes the c-ares allocated memory to end up. He knows exactly how the ChromeOS dlmalloc system works and its best-fit allocator, how big the c-ares malloc will be and thus where the overwritten 1 will end up. When the byte 1 is written after the memory, it is written into the header of the next memory chunk handled by dlmalloc:

two-mallocs

The specific byte of that following dlmalloc header that it writes to, is used for flags and the lowest bits of size of that allocated chunk of memory.

Writing 1 to that byte clears 2 flags, sets one flag and clears the lowest bits of the chunk size. The important flag it sets is called prev_inuse and is used by dlmalloc to tell if it can merge adjacent areas on free. (so, if the value 1 simply had been a 2 instead, this flaw could not have been exploited this way!)

When the c-ares buffer that had overflowed is then freed again, dlmalloc gets fooled into consolidating that buffer with the subsequent one in memory (since it had toggled that bit) and thus the larger piece of assumed-to-be-free memory is partly still being in use. Open for manipulations!

freed-malloc

Using that memory buffer mess

This freed memory area whose end part is actually still being used opened up the play-field for more “fun”. With doing another creative HTTP request, that memory block would be allocated and used to store new data into.

The attacker managed to insert the right data in that further end of the data block, the one that was still used by another part of the program, mostly since the proxy pretty much allowed anything to get crammed into the request. The attacker managed to put his own code to execute in there and after a few more steps he ran whatever he wanted as root. Well, the user would have to get tricked into running a particular JavaScript but still…

I cannot even imagine how long time it must have taken to make this exploit and how much work and sweat that were spent. The report I read on this was 37 very detailed pages. And it was one of the best things I’ve read in a long while! When this goes public in the future, I hope at least parts of that description will become available for you as well.

A lesson to take away from this?

No matter how limited or harmless a flaw may appear at a first glance, it can serve a malicious purpose and serve as one little step in a long chain of events to attack a system. And there are skilled people out there, ready to figure out all the necessary steps.

Update: A detailed write-up about this flaw (pretty much the report I refer to above) by the researcher who found it was posted on Google’s Project Zero blog on December 14:
Chrome OS exploit: one byte overflow and symlinks.

curl and h2 on mac

$ curl ‐‐http2 https://daniel.haxx.se/
curl: (1) Unsupported protocol

curl on mac

curcurl-symboll has been shipped by default on Mac OS X since many years – I actually couldn’t even manage to figure out exactly how many. It is built and bundled with the operating system by Apple itself and on Apple’s own terms and even though I’m the main curl developer I’ve never discussed this with them or even been asked or told about their plans. I’m not complaining, our license allows this and I’m nothing but happy with them shipping curl to millions of Mac users.

Leaving OpenSSL

osxOriginally, curl on Mac was built against OpenSSL for the TLS and SSL support, but over time our friends at Apple have switched more and more of their software over to use their own TLS and crypto library Secure Transport instead of OpenSSL. A while ago Apple started bundling curl built to use the native mac TLS library instead of OpenSSL.

As you may know, when you build curl you can select from eleven different TLS libraries and one of them of course is Secure Transport. Support for this TLS back-end in curl was written by curl hackers, but it apparently got to a quality level good enough for Apple to decide to build curl with this back-end and ship it like that.

The Secure Transport back-end is rather capable and generally doesn’t cause many reasons for concern. There’s however one notable little glitch that people keep asking me about…

curl doesn’t support HTTP/2 on mac!

There are two obvious reasons why not, and they are:

1. No ALPN with Secure Transport

Secure Transport doesn’t offer any public API to enable HTTP/2 with ALPN when speaking HTTPS. Sure, we know Apple supports HTTP/2 already in several other aspects in their ecosystem and we can check their open code so we know there’s support for HTTP/2 and ALPN. There’s just no official APIs for us to use to switch it on!

So, if you insist on building curl to use Secure Transport instead of one of the many alternatives that actually support ALPN just fine, then you can’t negotiate HTTP/2 over TLS!

2. No nghttp2 with Mac OS

Even without ALPN support, you could actually still negotiate HTTP/2 over plain text TCP connections if you have a server that supports it. But even then curl depends on the awesome nghttp2 library to provide the frame level protocol encoding/decoding and more. If Apple would decide to enable HTTP/2 support for curl on Mac OS, they need to build it against nghttp2. I really think they should.

Homebrew and friends to the rescue!

Correct. You can still install your own separate curl binary (and libcurl library) from other sources, like for example Homebrew or Macports and they do offer versions built against other TLS back-ends and nghttp2 and then of course HTTP/2 works just fine with curl on mac.

Did I file a bug with Apple?

No, but I know for certain that there has been a bug report filed by someone else. Unfortunately it isn’t public so I can’t link nor browse it.

The most popular curl download – by a malware

During October 2015 the curl web site sent out 1127 gigabytes of data. This was the first time we crossed the terabyte limit within a single month.

Looking at the stats a little closer, I noticed that in July 2015 a particular single package started to get very popular. The exact URL was

http://curl.haxx.se/gknw.net/7.40.0/dist-w32/curl-7.40.0-devel-mingw32.zip

Curious. In October it alone was downloaded more than 300,000 times, accounting for over 70% of the site’s bandwidth. Why?

The downloads came from what appears to be different locations. They don’t use any HTTP referer headers and they used different User-agent headers. I couldn’t really see a search bot gone haywire or a malicious robot stuck in a crazy mode.

After I shared some of this data over in our IRC channel (#curl on freenode), Björn Stenberg stumbled over this AVG slide set, describing how a particular malware works when it infects a computer. Downloading that particular file is thus a step in its procedures to create a trojan that will run on the host system Рsee slide 11 for the curl details. The slide also mentions that an updated version of the malware comes bundled with the curl library already, which then I guess makes the hits we see on the curl site being done by the older versions still being run.

Of course, we can’t be completely sure this is the source for the increased download of this particular file but it seems highly likely.

I renamed the file just now to see what happens.

Evil use of good code

We can of course not prevent evil uses of our code. We provide source code and we even host some binaries of curl and libcurl and both good and bad actors are able to take advantage of our offers.

This rename won’t prevent a dedicated hacker, but hopefully it can prevent a few new victims from getting this malware running on their machines.

Update: the hacker news discussion about this post.

http2 explained in markdown

http2 explainedAfter twelve¬† releases and over 140,000 downloads of my explanatory document “http2 explained“, I eventually did the right thing and converted the entire book over to markdown syntax and put the book up on gitbook.com.

Better output formats, now epub, MOBI, PDF and everything happens on every commit.

Better collaboration, github and regular pull requests work fine with text content instead of weird binary word processor file formats.

Easier for translators. With plain text commits to aid in tracking changes, and with the images in a separate directory etc writing and maintaining translated versions of the book should be less tedious.

I’m amazed and thrilled that we already have Chinese, Russian, French and Spanish translations and I hear news about additional languages in the pipe.

I haven’t yet decided how to do with “releases” now, as now we update everything on every push so the latest version is always available to read. Go to http://daniel.haxx.se/http2/ to find out the latest about the document and the most updated version of the document.

Thanks everyone who helps out. You’re the best!

The TLS trinity dance

In the curl project we currently support eleven different TLS libraries. That is 8 libraries and the OpenSSL “trinity” consisting of BoringSSL, libressl and of course OpenSSL itself.

You could easily be mislead into believing that supporting three libraries that all have a common base would be reallytrinity easy since they have the same API. But no, it isn’t. Sure, they have the same foundation and they all three have more in common that they differ but still, they all diverge in their own little ways and from my stand-point libressl seems to be the one that causes us the least friction going forward.

Let me also stress that I’m but a user of these projects, I don’t participate in their work and I don’t have any insights into their internal doings or greater goals.

libressl

Easy-peacy, very similar to OpenSSL. The biggest obstacle might be that the version numbering is different so an old program that might be adjusted to different OpenSSL features based on version numbers (like curl was) needs some adjusting. There’s a convenient LIBRESSL_VERSION_NUMBER define to detect libressl with.

OpenSSL

I regularly build curl against OpenSSL from their git master to get an early head-start when they change things and break backwards compatibility. They’ve increased that behavior since Heartbleed and while I generally agree with their ambitions on making more structs opaque instead of exposing all internals, it also hurts us over and over again when they remove things we’ve been using for years. What’s “funny” is that in almost all cases, their response is “well use this way instead” and it has turned out that there’s an equally old API that is still there that we can use instead. It also tells something about their documentation situation when that is such a common pattern. It’s never been possible to grasp this from just reading docs.

BoringSSL

BoringSSL has made great inroads in the market and is used on Android now and more. They don’t do releases(!) and have no version numbers so the only thing we can do is to build from git and there’s no install target in the makefile. There’s no docs for it, they remove APIs from OpenSSL (curl can’t support NTLM nor OCSP stapling when built with it), they’ve changed several data types in the API making it really hard to build curl without warnings. Funnily, they also introduced non-namespaced typedefs prefixed with X509_* that collide with other common headers.

How it can play out in real life

A while ago we noticed BoringSSL had removed the DES_set_odd_parity function which we use in curl. We changed the configure script to look for it and changed the code to survive without it. The lack of that function then also signaled that it wasn’t OpenSSL, it was BoringSSL

BoringSSL moved around things that caused our configure script to no longer detect it as “OpenSSL compliant” because CRYPTO_lock could no longer be found by configure. We changed it to instead search for HMAC_Init and we were fine again.

Time passed and BoringSSL brought back DES_set_odd_parity, so our configure script no longer saw it as BoringSSL (the Android fixed this problem in their git but never sent as the fix). We changed the configure script accordingly to properly use OPENSSL_IS_BORINGSSL instead to detect BoringSSL which was the correct thing anyway and now as a bonus it can thus detect and work with both new and old BoringSSL versions.

A short time after, I again try to build curl against the OpenSSL master branch only to realize they’ve deprecated HMAC_Init that we just recently switched to for detection (since the configure script needs to check for a particular named function within a library to really know that it has detected and can use said library). Sigh, we switched “detect function” again to HMAC_Update. Hopefully this exists in all three and will stick around for a while…

Right now I think we can detect and use all three. It is only a matter of time until one of them will ruin that and we will adapt again.

HTTPS and HTTP/2 plans for my sites

I produce a fair amount of open source code. I make that code available online. curl is probably the most popular package.

People ask me how they can trust that they are actually downloading what I put up there. People ask me when my source code can be retrieved over HTTPS. Signatures and hashes don’t add a lot against attacks when they all also are fetched over HTTP…

HTTPS

SSL padlockI really and truly want to offer HTTPS (only) for all my sites.√ā¬† I and my friends run a whole busload of sites on the same physical machine and IP address (www.haxx.se, daniel.haxx.se, curl.haxx.se, c-ares.haxx.se, cool.haxx.se, libssh2.org and many more) so I would like a solution that works for all of them.

I can do this by buying certs, either a lot of individual ones or a few wildcard ones and then all servers would be covered. But the cost and the inconvenience of needing a lot of different things to make everything work has put me off. Especially since I’ve learned that there is a better solution in the works!

Let’s Encrypt will not only solve the problem for us from a cost perspective, but they also promise to solve some of the quirks on the technical side as well. They say they will ship certificates by September 2015 and that has made me wait for that option rather than rolling up my sleeves to solve the problem with my own sweat and money. Of course there’s a risk that they are delayed, but I’m not running against a hard deadline myself here.

HTTP/2

Related, I’ve been much involved in the HTTP/2 development and I host my “http2 explained” document on my still non-HTTPS site. I get a lot of questions (and some mocking) about why my HTTP/2 documentation isn’t itself available over HTTP/2. I would really like to offer it over HTTP/2.

Since all the browsers only do HTTP/2 over HTTPS, a prerequisite here is that I get HTTPS up and running first. See above.

Once HTTPS is in place, I want to get HTTP/2 going as well. I still run good old Apache here so it might be done using mod_h2 or perhaps with a fronting nghttp2 proxy. We’ll see.