Tag Archives: HTTP

curl with rust

I did an online presentation with this name for the Rust Linz meetup, on January 27 2022. This is the recording:

The individual slides are also available.

Content quickly

In this presentation I talk about how libcurl’s most important aspect is the stable ABI and API. If we just maintain those, we can change the internals however we like.

libcurl has a system with build-time selected components, called backends. They are usually powered by third party libraries. With the recently added HTTP backend there are now seven “flavors” of backends.

A backend can be provided by a library written in rust, as long as that rust component provides a C interface that libcurl can use. When it does, it being rust or not is completely transparent and a non-issue for libcurl.

curl currently supports components written in rust for three different backends:

None of these backends are yet “feature complete”, but we are moving slowly towards that. Your help is appreciated!

Fun multipart/form-data inconsistencies

I still remember the RFC number off the top of my head for the first multipart formdata spec that I implemented support for in curl. Added to curl in version 5.0, December 1998. RFC 1867.

Multipart formdata is the name of the syntax for how HTTP clients send data in a HTTP POST when they want to send binary content and multiple fields. Perhaps the most common use case for users is when uploading a file or an image with a browser to a website. This is also what you fire off with curl’s -F command line option.

RFC 1867 was published in November 1995 and it has subsequently been updated several times. The most recent incarnation for this spec is now known as RFC 7578, published in July 2015. Twenty years of history, experiences and minor adjustments. How do they affect us?

I admit to having dozed off a little at the wheel and I hadn’t really paid attention to the little tweaks that slowly had been happening in the multipart formata world until Ryan Sleevi woke me up.

Percent-encoding

While I wasn’t looking, the popular browsers have now all switched over to a different encoding style for field and file names within the format. They now all use percent-encoding, where we originally all used to do backslash-escaping! I haven’t actually bothered to check exactly when they switched, primarily because I don’t think it matters terribly much. They do this because this is now the defined syntax in WHATWG’s HTML spec. Yes, another case of separate specs diverging and saying different things for what is essentially the same format.

curl 7.80.0 is probably the last curl version to do the escaping the old way and we are likely to switch to the new way by default starting in the next release. The work on this is done by Patrick Monnerat in his PR.

For us in the curl project it is crucial to maintain behavior, but it is also important to be standard compliant and to interoperate with the big world out there. When all the major browsers have switched to percent-encoding I suspect it is only a matter of time until servers and server-side scripts start to assume and require percent-encoding. This is a tricky balancing act. There will be users who expect us to keep up with the browsers, but also some that expect us to maintain the way we’ve done it for almost twenty-three years…

libcurl users at least, will be offered a way to switch back to use the old escaping mechanism to make sure applications that know they work with older style server decoders can keep their applications working.

Landing

This blog post is made public before the PR mentioned above has been merged in order for people to express opinions and comments before it is done. The plan is to have it merged and ship in curl 7.81.0, to be released in January 2022.

curl -G vs curl -X GET

(This is a repost of a stackoverflow answer I once wrote on this topic. Slightly edited. Copied here to make sure I own and store my own content properly.)

curl knows the HTTP method

You normally use curl without explicitly saying which request method to use.

If you just pass in a HTTP URL like curl http://example.com, curl will use GET. If you use -d or -F curl will use POST, -I will cause a HEAD and -T will make it a PUT.

If for whatever reason you’re not happy with these default choices that curl does for you, you can override those request methods by specifying -X [WHATEVER]. This way you can for example send a DELETE by doing curl -X DELETE [URL].

It is thus pointless to do curl -X GET [URL] as GET would be used anyway. In the same vein it is pointless to do curl -X POST -d data [URL]... But you can make a fun and somewhat rare request that sends a request-body in a GET request with something like curl -X GET -d data [URL].

Digging deeper

curl -GET (using a single dash) is just wrong for this purpose. That’s the equivalent of specifying the -G, -E and -T options and that will do something completely different.

There’s also a curl option called --get to not confuse matters with either. It is the long form of -G, which is used to convert data specified with -d into a GET request instead of a POST.

(I subsequently used this answer to populate the curl FAQ to cover this.)

Warnings

Modern versions of curl will inform users about this unnecessary and potentially harmful use of -X when verbose mode is enabled (-v) – to make users aware. Further explained and motivated here.

-G converts a POST + body to a GET + query

You can ask curl to convert a set of -d options and instead of sending them in the request body with POST, put them at the end of the URL’s query string and issue a GET, with the use of `-G. Like this:

curl -d name=daniel -d grumpy=yes -G https://example.com/

… which does the exact same thing as this command:

curl https://example.com/?name=daniel&grumpy=yes

curl ootw: –range

--range or -r for short. As the name implies, this option is for doing “range requests”. This flag was available already in the first curl release ever: version 4.0. This option requires an extra argument specifying the specific requested range. Read on the learn how!

What exactly is a range request?

Get a part of the remote resource

Maybe you have downloaded only a part of a remote file, or maybe you’re only interested in getting a fraction of a huge remote resource. Those are two situations in which you might want your internet transfer client to ask the server to only transfer parts of the remote resource back to you.

Let’s say you’ve tried to download a 32GB file (let’s call it a huge file) from a slow server on the other side of the world and when you only had 794 bytes left to transfer, the connection broke and the transfer was aborted. The transfer took a very long time and you prefer not to just restart it from the beginning and yet, with many file formats those final 794 bytes are critical and the content cannot be handled without them.

We need those final 794 bytes! Enter range requests.

With range requests, you can tell curl exactly what byte range to ask for from the server. “Give us bytes 12345-12567” or “give us the last 794 bytes”. Like this:

curl --range 12345-12567 https://example.com/

and:

curl --range -794 https://example.com/

This works with curl with several different protocols: HTTP(S), FTP(S) and SFTP. With HTTP(S), you can even be more fancy and ask for multiple ranges in the same request. Maybe you want the three sections of the resource?

curl --range 0-1000,2000-3000,4000-5000 https://example.com/

Let me again emphasize that this multi-range feature only exists for HTTP(S) with curl and not with the other protocols, and the reason is quite simply that HTTP provides this by itself and we haven’t felt motivated enough to implement it for the other protocols.

Not always that easy

The description above is for when everything is fine and easy. But as you know, life is rarely that easy and straight forward as we want it to be and nether is the --range option. Primarily because of this very important detail:

Range support in HTTP is optional.

It means that when curl asks for a particular byte range to be returned, the server might not obey or care and instead it delivers the whole thing anyway. As a client we can detect this refusal, since a range response has a special HTTP response code (206) which won’t be used if the entire thing is sent back – but that’s often of little use if you really want to get the remaining bytes of a larger resource out of which you already have most downloaded since before.

One reason it is optional for HTTP and why many sites and pages in the wild refuse range requests is that those sites and pages generate contend on demand, dynamically. If we ask for a byte range from a static file on disk in the server offering a byte range is easy. But if the document is instead the result of lots of scripts and dynamic content being generated uniquely in the server-side at the time of each request, it isn’t.

HTTP 416 Range Not Satisfiable

If you ask for a range that is outside of what the server can provide, it will respond with a 416 response code. Let’s say for example you download a complete 200 byte resource and then you ask that server for the range 200-202 – you’ll get a 416 back because 200 bytes are index 0-199 so there’s nothing available at byte index 200 and beyond.

HTTP other ranges

--range for HTTP content implies “byte ranges”. There’s this theoretical support for other units of ranges in HTTP but that’s not supported by curl and in fact is not widely used over the Internet. Byte ranges are complicated enough!

Related command line options

curl also offers the --continue-at (-C) option which is a perhaps more user-friendly way to resume transfers without the user having to specify the exact byte range and handle data concatenation etc.

Expect: tweaks in curl

One of the persistent myths about HTTP is that it is “a simple protocol”.

Expect: – not always expected

One of the dusty spec corners of HTTP/1.1 (Section 5.1.1 of RFC 7231) explains how the Expect: header works. This is still today in 2020 one of the HTTP request headers that is very commonly ignored by servers and intermediaries.

Background

HTTP/1.1 is designed for being sent over TCP (and possibly also TLS) in a serial manner. Setting up a new connection is costly, both in terms of CPU but especially in time – requiring a number of round-trips. (I’ll detail further down how HTTP/2 fixes all these issues in a much better way.)

HTTP/1.1 provides a number of ways to allow it to perform all its duties without having to shut down the connection. One such an example is the ability to tell a client early on that it needs to provide authentication credentials before the clients sends of a large payload. In order to maintain the TCP connection, a client can’t stop sending a HTTP payload prematurely! When the request body has started to get transmitted, the only way to stop it before the end of data is to cut off the connection and create a new one – wasting time and CPU…

“We want a 100 to continue”

A client can include a header in its outgoing request to ask the server to first acknowledge that everything is fine and that it can continue to send the “payload” – or it can return status codes that informs the client that there are other things it needs to fulfill in order to have the request succeed. Most such cases typically that involves authentication.

This “first tell me it’s OK to send it before I send it” request header looks like this:

Expect: 100-continue

Servers

Since this mandatory header is widely not understood or simply ignored by HTTP/1.1 servers, clients that issue this header will have a rather short timeout and if no response has been received within that period it will proceed and send the data even without a 100.

The timeout thing is happening so often that removing the Expect: header from curl requests is a very common answer to question on how to improve POST or PUT requests with curl, when it works against such non-compliant servers.

Popular browsers

Browsers are widely popular HTTP clients but none of the popular ones ever use this. In fact, very few clients do. This is of course a chicken and egg problem because servers don’t support it very well because clients don’t and client’s don’t because servers don’t support it very well…

curl sends Expect:

When we implemented support for HTTP/1.1 in curl back in 2001, we wanted it done proper. We made it have a short, 1000 milliseconds, timeout waiting for the 100 response. We also made curl automatically include the Expect: header in outgoing requests if we know that the body is larger than NNN or we don’t know the size at all before-hand (and obviously, we don’t do it if we send the request chunked-encoded).

The logic being there that if the data amount is smaller than NNN, then the waste is not very big and we can just as well send it (even if we risk sending it twice) as waiting for a response etc is just going to be more time consuming.

That NNN margin value (known in the curl sources as the EXPECT_100_THRESHOLD) in curl was set to 1024 bytes already then back in the early 2000s.

Bumping EXPECT_100_THRESHOLD

Starting in curl 7.69.0 (due to ship on March 4, 2020) we catch up a little with the world around us and now libcurl will only automatically set the Expect: header if the amount of data to send in the body is larger than 1 megabyte. Yes, we raise the limit by 1024 times.

The reasoning is of course that for most Internet users these days, data sizes below a certain size isn’t even noticeable when transferred and so we adapt. We then also reduce the amount of problems for the very small data amounts where waiting for the 100 continue response is a waste of time anyway.

Credits: landed in this commit. (sorry but my WordPress stupidly can’t show the proper Asian name of the author!)

417 Expectation Failed

One of the ways that a HTTP/1.1 server can deal with an Expect: 100-continue header in a request, is to respond with a 417 code, which should tell the client to retry the same request again, only without the Expect: header.

While this response is fairly uncommon among servers, curl users who ran into 417 responses have previously had to resort to removing the Expect: header “manually” from the request for such requests. This was of course often far from intuitive or easy to figure out for users. A source for grief and agony.

Until this commit, also targeted for inclusion in curl 7.69.0 (March 4, 2020). Starting now, curl will automatically act on 417 response if it arrives as a consequence of using Expect: and then retry the request again without using the header!

Credits: I wrote the patch.

HTTP/2 avoids this all together

With HTTP/2 (and HTTP/3) this entire thing is a non-issue because with these modern protocol versions we can abort a request (stop a stream) prematurely without having to sacrifice the connection. There’s therefore no need for this crazy dance anymore!

HTTP/3 for everyone

FOSDEM 2020 is over for this time and I had an awesome time in Brussels once again.

Stickers

I brought a huge collection of stickers this year and I kept going back to the wolfSSL stand to refill the stash and it kept being emptied almost as fast. Hundreds of curl stickers were given away! The photo on the right shows my “sticker bag” as it looked before I left Sweden.

Lesson for next year: bring a larger amount of stickers! If you missed out on curl stickers, get in touch and I’ll do my best to satisfy your needs.

The talk

“HTTP/3 for everyone” was my single talk this FOSDEM. Just two days before the talk, I landed updated commits in curl’s git master branch for doing HTTP/3 up-to-date with the latest draft (-25). Very timely and I got to update the slide mentioning this.

As I talked HTTP/3 already last year in the Mozilla devroom, I also made sure to go through the slides I used then to compare and make sure I wouldn’t do too much of the same talk. But lots of things have changed and most of the content is updated and different this time around. Last year, literally hundreds of people were lining up outside wanting to get into room when the doors were closed. This year, I talked in the room Janson, which features 1415 seats. The biggest one on campus. It was pack full!

It is kind of an adrenaline rush to stand in front of such a wall of people. At one time in my talk I paused for a brief moment and then I felt I could almost hear the complete silence when a huge amount of attentive faces captured what I had to say.

The audience, photographed by Sidsel Jensen who had to sit in the stairs…
Photo by Mirza Krak
Photo by Wolfgang Gassler

I got a lot of positive feedback on the presentation. I also thought that my decision to not even try to take question in the big room was a correct and I ended up talking and discussing details behind the scene for a good while after my talk was done. Really fun!

The video

The video is also available from the FOSDEM site in webm and mp4 formats.

The slides

If you want the slides only, run over to slideshare and view them.

curl speaks etag

The ETag HTTP response header is an identifier for a specific version of a resource. It lets caches be more efficient and save bandwidth, as a web server does not need to resend a full response if the content has not changed. Additionally, etags help prevent simultaneous updates of a resource from overwriting each other (“mid-air collisions”).

That’s a quote from the mozilla ETag documentation. The header is defined in RFC 7232.

In short, a server can include this header when it responds with a resource, and in subsequent requests when a client wants to get an updated version of that document it sends back the same ETag and says “please give me a new version if it doesn’t match this ETag anymore”. The server will then respond with a 304 if there’s nothing new to return.

It is a better way than modification time stamp to identify a specific resource version on the server.

ETag options

Starting in version 7.68.0 (due to ship on January 8th, 2020), curl will feature two new command line options that makes it easier for users to take advantage of these features. You can of course try it out already now if you build from git or get a daily snapshot.

The ETag options are perfect for situations like when you run a curl command in a cron job to update a file if it has indeed changed on the server.

--etag-save <filename>

Issue the curl command and if there’s an ETag coming back in the response, it gets saved in the given file.

--etag-compare <filename>

Load a previously stored ETag from the given file and include that in the outgoing request (the file should only consist of the specific ETag “value” and nothing else). If the server deems that the resource hasn’t changed, this will result in a 304 response code. If it has changed, the new content will be returned.

Update the file if newer than previously stored ETag:

curl --etag-compare etag.txt --etag-save etag.txt https://example.com -o saved-file

If-Modified-Since options

The other method to accomplish something similar is the -z (or --time-cond) option. It has been supported by curl since the early days. Using this, you give curl a specific time that will be used in a conditional request. “only respond with content if the document is newer than this”:

curl -z "5 dec 2019" https:/example.com

You can also do the inversion of the condition and ask for the file to get delivered only if it is older than a certain time (by prefixing the date with a dash):

curl -z "-1 jan 2003" https://example.com

Perhaps this is most conveniently used when you let curl get the time from a file. Typically you’d use the same file that you’ve saved from a previous invocation and now you want to update if the file is newer on the remote site:

curl -z saved-file -o saved-file https://example.com

Tool, not libcurl

It could be noted that these new features are built entirely in the curl tool by using libcurl correctly with the already provided API, so this change is done entirely outside of the library.

Credits

The idea for the ETag goodness came from Paul Hoffman. The implementation was brought by Maros Priputen – as his first contribution to curl! Thanks!

curl says bye bye to pipelining

HTTP/1.1 Pipelining is the protocol feature where the client sends off a second HTTP/1.1 request already before the answer to the previous request has arrived (completely) from the server. It is defined in the original HTTP/1.1 spec and is a way to avoid waiting times. To reduce latency.

HTTP/1.1 Pipelining was badly supported by curl for a long time in the sense that we had a series of known bugs and it was a fragile feature without enough tests. Also, pipelining is fairly tricky to debug due to the timing sensitivity so very often enabling debug outputs or similar completely changes the nature of the behavior and things are not reproducing anymore!

HTTP pipelining was never enabled by default by the large desktop browsers due to all the issues with it, like broken server implementations and the likes. Both Firefox and Chrome dropped pipelining support entirely since a long time back now. curl did in fact over time become more and more lonely in supporting pipelining.

The bad state of HTTP pipelining was a primary driving factor behind HTTP/2 and its multiplexing feature. HTTP/2 multiplexing is truly and really “pipelining done right”. It is way more solid, practical and solves the use case in a better way with better performance and fewer downsides and problems. (curl enables multiplexing by default since 7.62.0.)

In 2019, pipelining should be abandoned and HTTP/2 should be used instead.

Starting with this commit, to be shipped in release 7.65.0, curl no longer has any code that supports HTTP/1.1 pipelining. It has been disabled in the code since 7.62.0 already so applications and users that use a recent version already should not notice any difference.

Pipelining was always offered on a best-effort basis and there was never any guarantee that requests would actually be pipelined, so we can remove this feature entirely without breaking API or ABI promises. Applications that ask libcurl to use pipelining can still do that, it just won’t have any effect.

Workshop Season 4 Finale

The 2019 HTTP Workshop ended today. In total over the years, we have now done 12 workshop days up to now. This day was not a full day and we spent it on only two major topics that both triggered long discussions involving large parts of the room.

Cookies

Mike West kicked off the morning with his cookies are bad presentation.

One out of every thousand cookie header values is 10K or larger in size and even at the 50% percentile, the size is 480 bytes. They’re a disaster on so many levels. The additional features that have been added during the last decade are still mostly unused. Mike suggests that maybe the only way forward is to introduce a replacement that avoids the issues, and over longer remove cookies from the web: HTTP state tokens.

A lot of people in the room had opinions and thoughts on this. I don’t think people in general have a strong love for cookies and the way they currently work, but the how-to-replace-them question still triggered lots of concerns about issues from routing performance on the server side to the changed nature of the mechanisms that won’t encourage web developers to move over. Just adding a new mechanism without seeing the old one actually getting removed might not be a win.

We should possibly “worsen” the cookie experience over time to encourage switch over. To cap allowed sizes, limit use to only over HTTPS, reduce lifetimes etc, but even just that will take effort and require that the primary cookie consumers (browsers) have a strong will to hurt some amount of existing users/sites.

(Related: Mike is also one of the authors of the RFC6265bis draft in progress – a future refreshed cookie spec.)

HTTP/3

Mike Bishop did an excellent presentation of HTTP/3 for HTTP people that possibly haven’t kept up fully with the developments in the QUIC working group. From a plain HTTP view, HTTP/3 is very similar feature-wise to HTTP/2 but of course sent over a completely different transport layer. (The HTTP/3 draft.)

Most of the questions and discussions that followed were rather related to the transport, to QUIC. Its encryption, it being UDP, DOS prevention, it being “CPU hungry” etc. Deploying HTTP/3 might be a challenge for successful client side implementation, but that’s just nothing compared the totally new thing that will be necessary server-side. Web developers should largely not even have to care…

One tidbit that was mentioned is that in current Firefox telemetry, it shows about 0.84% of all requests negotiates TLS 1.3 early data (with about 12.9% using TLS 1.3)

Thought-worthy quote of the day comes from Willy: “everything is a buffer”

Future Workshops

There’s no next workshop planned but there might still very well be another one arranged in the future. The most suitable interval for this series isn’t really determined and there might be reasons to try tweaking the format to maybe change who will attend etc.

The fact that almost half the attendees this time were newcomers was certainly good for the community but that not a single attendee traveled here from Asia was less good.

Thanks

Thanks to the organizers, the program committee who set this up so nicely and the awesome sponsors!

More Amsterdamned Workshop

Yesterday we plowed through a large and varied selection of HTTP topics in the Workshop. Today we continued. At 9:30 we were all in that room again. Day two.

Martin Thomson talked about his “hx” proposal and how to refer to future responses in HTTP APIs. He ended up basically concluding that “This is too complicated, I think I’m going to abandon this” and instead threw in a follow-up proposal he called “Reverse Javascript” that would be a way for a client to pass on a script for the server to execute! The room exploded in questions, objections and “improvements” to this idea. There are also apparently a pile of prior art in similar vein to draw inspiration from.

With the audience warmed up like this, Anne van Kasteren took us back to reality with an old favorite topic in the HTTP Workshop: websockets. Not a lot of love for websockets in the room… but this was the first of several discussions during the day where a desire or quest for bidirectional HTTP streams was made obvious.

Woo Xie did a presentation with help from Alan Frindell about Extending h2 for Bidirectional Messaging and how they propose a HTTP/2 extension that adds a new frame to create a bidirectional stream that lets them do messaging over HTTP/2 fine. The following discussion was slightly positive but also contained alternative suggestions and references to some of the many similar drafts for bidirectional and p2p connections over http2 that have been done in the past.

Lucas Pardue and Nick Jones did a presentation about HTTP/2 Priorities, based a lot of research previously done and reported by Pat Meenan. Lucas took us through the history of how the priorities ended up like this, their current state and numbers and also the chaos and something about a possible future, the h3 way of doing prio and mr Meenan’s proposed HTTP/3 prio.

Nick’s second half of the presentation then took us through Cloudflare’s Edge Driven HTTP/2 Prioritisation work/experiments and he showed how they could really improve how prioritization works in nginx by making sure the data is written to the socket as late as possible. This was backed up by audience references to the TAPS guidelines on the topic and a general recollection that reducing the number connections is still a good idea and should be a goal! Server buffering is hard.

Asbjørn Ulsberg presented his case for a new request header: prefer-push. When used, the server can respond to the request with a series of pushed resources and thus save several round-rips. This triggered sympathy in the room but also suggestions of alternative approaches.

Alan Frindell presented Partial POST Replay. It’s a rather elaborate scheme that makes their loadbalancers detect when a POST to one of their servers can’t be fulfilled and they instead replay that POST to another backend server. While Alan promised to deliver a draft for this, the general discussion was brought up again about POST and its “replayability”.

Willy Tarreau followed up with a very similar topic: Retrying failed POSTs. In this this context RFC 2310 – The Safe Response Header Field was mentioned and that perhaps something like this could be considered for requests? The discussion certainly had similarities and overlaps with the SEARCH/POST discussion of yesterday.

Mike West talked about Fetch Metadata Request Headers which is a set of request headers explaining for servers where and what for what purpose requests are made by browsers. He also took us through a brief explained of Origin Policy, meant to become a central “resource” for a manifest that describes properties of the origin.

Mark Nottingham presented Structured Headers (draft). This is a new way of specifying and parsing HTTP headers that will make the lives of most HTTP implementers easier in the future. (Parts of the presentation was also spent debugging/triaging the most weird symptoms seen when his Keynote installation was acting up!) It also triggered a smaller side discussion on what kind of approaches that could be taken for HPACK and QPACK to improve the compression ratio for headers.

Anne van Kesteren talked Web-compatible header value parsers, standardizing on how to parse headers not covered by structured headers.

Yoav Weiss described the current status of client hints (draft). This is shipped by Chrome already and he wanted more implementers to use it and tell how its working.

Roberto Peon presented an idea for doing “Partialy-Reliable HTTP” and after his talk and a discussion he concluded they will implement it, play around and come back and tell us what they’ve learned.

Mark Nottingham talked about HTTP for CDNs. He has this fancy-looking test suite in progress that checks how things are working and what is being supported and there are two drafts in progress: the cache response header and the proxy status header field.

Willy Tarreau talked about a race problem he ran into with closing HTTP/2 streams and he explained how he worked around it with a trailing ping frame and suggested that maybe more users might suffer from this problem.

The oxygen level in the room was certainly not on an optimal level at this point but that didn’t stop us. We knew we had a few more topics to get through and we all wanted to get to the boat ride of the evening on time. So…

Hooman Beheshti polled the room to get a feel for what people think about Early hints. Are people still on board? Turns out it is mostly appreciated but not supported by any browser and a discussion and explainer session followed as to why this is and what general problems there are in supporting 1xx headers in browsers. It is striking that most of us HTTP people in the room don’t know how browsers work! Here I could mention that Cory said something about the craziness of this, but I forget his exact words and I blame the fact that they were expressed to me on a boat. Or perhaps that the time is already approaching 1am the night after this fully packed day.

Good follow-up reads from that discussion is Yoav’s blog post A Tale of Four Caches and Jake Archibalds’s HTTP/2 Push is tougher than I thought.

As the final conversation of the day, Anne van Kesteren talked about Response Sources and the different ways a browser can do requests and get responses.

Boat!

HAproxy had the excellent taste of sponsoring this awesome boat ride on the Amsterdam canals for us at the end of the day

Boating on the Amsterdam canals, sponsored by HAproxy!

Thanks again to Cory Benfield for feeding me his notes of the day to help me keep things straight. All mistakes are mine. But if you tell me about them, I will try to correct the text!