Tag Archives: QUIC

Workshop Season 4 Finale

The 2019 HTTP Workshop ended today. In total over the years, we have now done 12 workshop days up to now. This day was not a full day and we spent it on only two major topics that both triggered long discussions involving large parts of the room.

Cookies

Mike West kicked off the morning with his cookies are bad presentation.

One out of every thousand cookie header values is 10K or larger in size and even at the 50% percentile, the size is 480 bytes. They’re a disaster on so many levels. The additional features that have been added during the last decade are still mostly unused. Mike suggests that maybe the only way forward is to introduce a replacement that avoids the issues, and over longer remove cookies from the web: HTTP state tokens.

A lot of people in the room had opinions and thoughts on this. I don’t think people in general have a strong love for cookies and the way they currently work, but the how-to-replace-them question still triggered lots of concerns about issues from routing performance on the server side to the changed nature of the mechanisms that won’t encourage web developers to move over. Just adding a new mechanism without seeing the old one actually getting removed might not be a win.

We should possibly “worsen” the cookie experience over time to encourage switch over. To cap allowed sizes, limit use to only over HTTPS, reduce lifetimes etc, but even just that will take effort and require that the primary cookie consumers (browsers) have a strong will to hurt some amount of existing users/sites.

(Related: Mike is also one of the authors of the RFC6265bis draft in progress – a future refreshed cookie spec.)

HTTP/3

Mike Bishop did an excellent presentation of HTTP/3 for HTTP people that possibly haven’t kept up fully with the developments in the QUIC working group. From a plain HTTP view, HTTP/3 is very similar feature-wise to HTTP/2 but of course sent over a completely different transport layer. (The HTTP/3 draft.)

Most of the questions and discussions that followed were rather related to the transport, to QUIC. Its encryption, it being UDP, DOS prevention, it being “CPU hungry” etc. Deploying HTTP/3 might be a challenge for successful client side implementation, but that’s just nothing compared the totally new thing that will be necessary server-side. Web developers should largely not even have to care…

One tidbit that was mentioned is that in current Firefox telemetry, it shows about 0.84% of all requests negotiates TLS 1.3 early data (with about 12.9% using TLS 1.3)

Thought-worthy quote of the day comes from Willy: “everything is a buffer”

Future Workshops

There’s no next workshop planned but there might still very well be another one arranged in the future. The most suitable interval for this series isn’t really determined and there might be reasons to try tweaking the format to maybe change who will attend etc.

The fact that almost half the attendees this time were newcomers was certainly good for the community but that not a single attendee traveled here from Asia was less good.

Thanks

Thanks to the organizers, the program committee who set this up so nicely and the awesome sponsors!

The future of HTTP Symposium

This year’s version of curl up started a little differently: With an afternoon of HTTP presentations. The event took place the same week the IETF meeting has just ended here in Prague so we got the opportunity to invite people who possibly otherwise wouldn’t have been here… Of course this was only possible thanks to our awesome sponsors, visible in the image above!

Lukáš Linhart from Apiary started out with “Web APIs: The Past, The Present and The Future”. A journey trough XML-RPC, SOAP and more. One final conclusion might be that we’re not quite done yet…

James Fuller from MarkLogic talked about “The Defenestration of Hypermedia in HTTP”. How HTTP web technologies have changed over time while the HTTP paradigms have survived since a very long time.

I talked about DNS-over-HTTPS. A presentation similar to the one I did before at FOSDEM, but in a shorter time so I had to talk a little faster!

Mike Bishop from Akamai (editor of the HTTP/3 spec and a long time participant in the HTTPbis work) talked about “The evolution of HTTP (from HTTP/1 to HTTP/3)” from HTTP/0.9 to HTTP/3 and beyond.

Robin Marx then rounded off the series of presentations with his tongue in cheek “HTTP/3 (QUIC): too big to fail?!” where we provided a long list of challenges for QUIC and HTTP/3 to get deployed and become successful.

We ended this afternoon session with a casual Q&A session with all the presenters discussing various aspects of HTTP, the web, REST, APIs and the benefits and deployment challenges of QUIC.

I think most of us learned things this afternoon and we could leave the very elegant Charles University room enriched and with more food for thoughts about these technologies.

We ended the evening with snacks and drinks kindly provided by Apiary.

(This event was not streamed and not recorded on video, you had to be there in person to enjoy it.)


alt-svc in curl

The RFC 7838 was published already in April 2016. It describes the new HTTP header Alt-Svc, or as the title of the document says HTTP Alternative Services.

HTTP Alternative Services

An alternative service in HTTP lingo is a quite simply another server instance that can provide the same service and act as the same origin as the original one. The alternative service can run on another port, on another host name, on another IP address, or over another HTTP version.

An HTTP server can inform a client about the existence of such alternatives by returning this Alt-Svc header. The header, which has an expiry time, tells the client that there’s an optional alternative to this service that is hosted on that host name, that port number using that protocol. If that client is a browser, it can connect to the alternative in the background and if that works out fine, continue to use that host for the rest of the time that alternative is said to work.

In reality, this header becomes a little similar to the DNS records SRV or URI: it points out a different route to the server than what the A/AAAA records for it say.

The Alt-Svc header came into life as an attempt to help out with HTTP/2 load balancing, since with the introduction of HTTP/2 clients would suddenly use much more persistent and long-living connections instead of the very short ones used for traditional HTTP/1 web browsing which changed the nature of how connections are done. This way, a system that is about to go down can hint the clients on how to continue using the service, elsewhere.

Alt-Svc: h2="backup.example.com:443"; ma=2592000;

HTTP upgrades

Once that header was published, the by then already existing and deployed Google QUIC protocol switched to using the Alt-Svc header to hint clients (read “Chrome users”) that “hey, this service is also available over gQUIC“. (Prior to that, they used their own custom alternative header that basically had the same meaning.)

This is important because QUIC is not TCP. Resources on the web that are pointed out using the traditional HTTPS:// URLs, still imply that you connect to them using TCP on port 443 and you negotiate TLS over that connection. Upgrading from HTTP/1 to HTTP/2 on the same connection was “easy” since they were both still TCP and TLS. All we needed then was to use the ALPN extension and voila: a nice and clean version negotiation.

To upgrade a client and server communication into a post-TCP protocol, the only official way to it is to first connect using the lowest common denominator that the HTTPS URL implies: TLS over TCP, and only once the server tells the client what more there is to try, the client can go on and try out the new toys.

For HTTP/3, this is the official way for HTTP servers to tell users about the availability of an HTTP/3 upgrade option.

curl

I want curl to support HTTP/3 as soon as possible and then as I’ve mentioned above, understanding Alt-Svc is a key prerequisite to have a working “bootstrap”. curl needs to support Alt-Svc. When we’re implementing support for it, we can just as well support the whole concept and other protocol versions and not just limit it to HTTP/3 purposes.

curl will only consider received Alt-Svc headers when talking HTTPS since only then can it know that it actually speaks with the right host that has the authority enough to point to other places.

Experimental

This is the first feature and code that we merge into curl under a new concept we do for “experimental” code. It is a way for us to mark this code as: we’re not quite sure exactly how everything should work so we allow users in to test and help us smooth out the quirks but as a consequence of this we might actually change how it works, both behavior and API wise, before we make the support official.

We strongly discourage anyone from shipping code marked experimental in production. You need to explicitly enable this in the build to get the feature. (./configure –enable-alt-svc)

But at the same time we urge and encourage interested users to test it out, try how it works and bring back your feedback, criticism, praise, bug reports and help us make it work the way we’d like it to work so that we can make it land as a “normal” feature as soon as possible.

Ship

The experimental alt-svc code has been merged into curl as of commit 98441f3586 (merged March 3rd 2019) and will be present in the curl code starting in the public release 7.64.1 that is planned to ship on March 27, 2019. I don’t have any time schedule for when to remove the experimental tag but ideally it should happen within just a few release cycles.

alt-svc cache

The curl implementation of alt-svc has an in-memory cache of known alternatives. It can also both save that cache to a text file and load that file back into memory. Saving the alt-svc cache to disk allows it to survive curl invokes and to truly work the way it was intended. The cache file stores the expire timestamp per entry so it doesn’t matter if you try to use a stale file.

curl –alt-svc

Caveat: I now talk about how a feature works that I’ve just above said might change before it ships. With the curl tool you ask for alt-svc support by pointing out the alt-svc cache file to use. Or pass a “” (empty name) to make it not load or save any file. It makes curl load an existing cache from that file and at the end, also save the cache to that file.

curl also already since a long time features fancy connection options such as –resolve and –connect-to, which both let a user control where curl connects to, which in many cases work a little like a static poor man’s alt-svc. Learn more about those in my curl another host post.

libcurl options for alt-svc

We start out the alt-svc support for libcurl with two separate options. One sets the file name to the alt-svc cache on disk (CURLOPT_ALTSVC), and the other control various aspects of how libcurl should behave in regards to alt-svc specifics (CURLOPT_ALTSVC_CTRL).

I’m quite sure that we will have reason to slightly adjust these when the HTTP/3 support comes closer to actually merging.

HTTP/3 talk on video

Yesterday, I had attracted audience enough to fill up the largest presentation room GOTO 10 has, which means about one hundred interested souls.

The subject of the day was HTTP/3. The event was filmed with a mevo camera and I captured the presentation directly from my laptop as well, and I then stitched together the two sources into this final version late last night. As you’ll notice, the sound isn’t awesome and the rest of the “production” isn’t exactly top notch either, but hey, I don’t think it matters too much.

I’ll talk about HTTP/3 (Photo by Jon Åslund)
I’m Daniel Stenberg. I was handed a medal from the Swedish king in 2017 for my work on… (Photo by OpenTokix)
HTTP/2 vs HTTP/3 (Photo by OpenTokix)
Some of the challenges to deploy HTTP/3 are…. (Photo by Jonathan Sulo)

The slide set can also be viewed on slideshare.

QUIC and missing APIs

I trust you’ve heard by now that HTTP/3 is coming. It is the next destined HTTP version, targeted to get published as an RFC in July 2019. Not very far off.

HTTP/3 will not be done over TCP. It will only be performed over QUIC, which is a transport protocol replacement for TCP that always is done encrypted. There’s no clear-text version of QUIC.

TLS 1.3

The encryption in QUIC is based on TLS 1.3 technologies which I believe everyone thinks is a good idea and generally the correct decision. We need to successively raise the bar as we move forward with protocols.

However, QUIC is not only a transport protocol that does encryption by itself while TLS is typically (and designed as) a protocol that is done on top of TCP, it was also designed by a team of engineers who came up with a design that requires APIs from the TLS layer that the traditional TLS over TCP use case doesn’t need!

New TLS APIs

A QUIC implementation needs to extract traffic secrets from the TLS connection and it needs to be able to read/write TLS messages directly – not using the TLS record layer. TLS records are what’s used when we send TLS over TCP. (This was discussed and decided back around the time for the QUIC interim in Kista.)

These operations need APIs that still are missing in for example the very popular OpenSSL library, but also in other commonly used ones like GnuTLS and libressl. And of course schannel and Secure Transport.

Libraries known to already have done the job and expose the necessary mechanisms include BoringSSL, NSS, quicly, PicoTLS and Minq. All of those are incidentally TLS libraries with a more limited number of application users and less mainstream. They’re also more or less developed by people who are also actively engaged in the QUIC protocol development.

The QUIC libraries in progress now are typically using either one of the TLS libraries that already are adapted or do what ngtcp2 does: it hosts a custom-patched version of OpenSSL that brings the needed functionality.

Matt Caswell of the OpenSSL development team acknowledged this situation already back in September 2017, but so far we haven’t seen this result in updated code shipped in a released version.

curl and QUIC

curl is TLS library agnostic and can get built with around 12 different TLS libraries – one or many actually, as you can build it to allow users to select TLS backend in run-time!

OpenSSL is without competition the most popular choice to build curl with outside of the proprietary operating systems like macOS and Windows 10. But even the vendor-build and provided mac and Windows versions are also built with libraries that lack APIs for this.

With our current keen interest in QUIC and HTTP/3 support for curl, we’re about to run into an interesting TLS situation. How exactly is someone going to build curl to simultaneously support both traditional TLS based protocols as well as QUIC going forward?

I don’t have a good answer to this yet. Right now (assuming we would have the code ready in our end, which we don’t), we can’t ship QUIC or HTTP/3 support enabled for curl built to use the most popular TLS libraries! Hopefully by the time we get our code in order, the situation has improved somewhat.

This will slow down QUIC deployment

I’m personally convinced that this little API problem will be friction enough when going forward that it will slow down and hinder QUIC deployment at least initially.

When the HTTP/2 spec shipped in May 2015, it introduced a dependency on the fairly new TLS extension called ALPN that for a long time caused head aches for server admins since ALPN wasn’t supported in the OpenSSL versions that was typically installed and used at the time, but you had to upgrade OpenSSL to version 1.0.2 to get that supported.

At that time, almost four years ago, OpenSSL 1.0.2 was already released and the problem was big enough to just upgrade to that. This time, the API we’re discussing here is not even in a beta version of OpenSSL and thus hasn’t been released in any version yet. That’s far worse than the HTTP/2 situation we had and that took a few years to ride out.

Will we get these APIs into an OpenSSL release to test before the QUIC specification is done? If the schedule sticks, there’s about six months left…

HTTP/3 Explained

I’m happy to tell that the booklet HTTP/3 Explained is now ready for the world. It is entirely free and open and is available in several different formats to fit your reading habits. (It is not available on dead trees.)

The book describes what HTTP/3 and its underlying transport protocol QUIC are, why they exist, what features they have and how they work. The book is meant to be readable and understandable for most people with a rudimentary level of network knowledge or better.

These protocols are not done yet, there aren’t even any implementation of these protocols in the main browsers yet! The book will be updated and extended along the way when things change, implementations mature and the protocols settle.

If you find bugs, mistakes, something that needs to be explained better/deeper or otherwise want to help out with the contents, file a bug!

It was just a short while ago I mentioned the decision to change the name of the protocol to HTTP/3. That triggered me to refresh my document in progress and there are now over 8,000 words there to help.

The entire HTTP/3 Explained contents are available on github.

If you haven’t caught up with HTTP/2 quite yet, don’t worry. We have you covered for that as well, with the http2 explained book.

HTTP/3

The protocol that’s been called HTTP-over-QUIC for quite some time has now changed name and will officially become HTTP/3. This was triggered by this original suggestion by Mark Nottingham.

The QUIC Working Group in the IETF works on creating the QUIC transport protocol. QUIC is a TCP replacement done over UDP. Originally, QUIC was started as an effort by Google and then more of a “HTTP/2-encrypted-over-UDP” protocol.

When the work took off in the IETF to standardize the protocol, it was split up in two layers: the transport and the HTTP parts. The idea being that this transport protocol can be used to transfer other data too and its not just done explicitly for HTTP or HTTP-like protocols. But the name was still QUIC.

People in the community has referred to these different versions of the protocol using informal names such as iQUIC and gQUIC to separate the QUIC protocols from IETF and Google (since they differed quite a lot in the details). The protocol that sends HTTP over “iQUIC” was called “hq” (HTTP-over-QUIC) for a long time.

Mike Bishop scared the room at the QUIC working group meeting in IETF 103 when he presented this slide with what could be thought of almost a logo…

On November 7, 2018 Dmitri of Litespeed announced that they and Facebook had successfully done the first interop ever between two HTTP/3 implementations. Mike Bihop’s follow-up presentation in the HTTPbis session on the topic can be seen here. The consensus in the end of that meeting said the new name is HTTP/3!

No more confusion. HTTP/3 is the coming new HTTP version that uses QUIC for transport!

quic wg interim Kista

The IETF QUIC working group had its fifth interim meeting the other day, this time in Kista, Sweden hosted by Ericsson. For me as a Stockholm resident, this was ridiculously convenient. Not entirely coincidentally, this was also the first quic interim I attended in person.

We were 30 something persons gathered in a room without windows, with another dozen or so participants joining from remote. This being a meeting in a series, most people already know each other from before so the atmosphere was relaxed and friendly. Lots of the participants have also been involved in other protocol developments and standards before. Many familiar faces.

Schedule

As QUIC is supposed to be done “soon”, the emphasis is now a lot to close issues, postpone some stuff to “QUICv2” and make sure to get decisions on outstanding question marks.

Kazuho did a quick run-through with some info from the interop days prior to the meeting.

After MT’s initial explanation of where we’re at for the upcoming draft-13, Ian took us a on a deep dive into the Stream 0 Design Team report. This is a pretty radical change of how the wire format of the quic protocol, and how the TLS is being handled.

The existing draft-12 approach…

Is suggested to instead become…

What’s perhaps the most interesting take away here is that the new format doesn’t use TLS records anymore – but simplifies a lot of other things. Not using TLS records but still doing TLS means that a QUIC implementation needs to get data from the TLS layer using APIs that existing TLS libraries don’t typically provide. PicoTLS, Minq, BoringSSL. NSS already have or will soon provide the necessary APIs. Slightly behind, OpenSSL should offer it in a nightly build soon but the impression is that it is still a bit away from an actual OpenSSL release.

EKR continued the theme. He talked about the quic handshake flow and among other things explained how 0-RTT and early data works. Taken from that context, I consider this slide (shown below) fairly funny because it makes it look far from simple to me. But it shows communication in different layers, and how the acks go, etc.

HTTP

Mike then presented the state of HTTP over quic. The frames are no longer that similar to the HTTP/2 versions. Work is done to ensure that the HTTP layer doesn’t need to refer or “grab” stream IDs from the transport layer.

There was a rather lengthy discussion around how to handle “placeholder streams” like the ones Firefox uses over HTTP/2 to create “anchors” on which to make dependencies but are never actually used over the wire. The nature of the quic transport makes those impractical and we talked about what alternatives there are that could still offer similar functionality.

The subject of priorities and dependencies and if the relative complexity of the h2 model should be replaced by something simpler came up (again) but was ultimately pushed aside.

QPACK

Alan presented the state of QPACK, the HTTP header compression algorithm for hq (HTTP over QUIC). It is not wire compatible with HPACK anymore and there have been some recent improvements and clarifications done.

Alan also did a great step-by-step walk-through how QPACK works with adding headers to the dynamic table and how it works with its indices etc. It was very clarifying I thought.

The discussion about the static table for the compression basically ended with us agreeing that we should just agree on a fairly small fixed table without a way to negotiate the table. Mark said he’d try to get some updated header data from some server deployments to get another data set than just the one from WPT (which is from a single browser).

Interop-testing of QPACK implementations can be done by encode  + shuffle + decode a HAR file and compare the results with the source data. Just do it – and talk to Alan!

And the first day was over. A fully packed day.

ECN

Magnus started off with some heavy stuff talking Explicit Congestion Notification in QUIC and it how it is intended to work and some remaining issues.

He also got into the subject of ACK frequency and how the current model isn’t ideal in every situation, causing to work like this image below (from Magnus’ slide set):

Interestingly, it turned out that several of the implementers already basically had implemented Magnus’ proposal of changing the max delay to min(RTT/4, 25 ms) independently of each other!

mvfst deployment

Subodh took us on a journey with some great insights from Facebook’s deployment of mvfast internally, their QUIC implementation. Getting some real-life feedback is useful and with over 100 billion requests/day, it seems they did give this a good run.

Since their usage and stack for this is a bit use case specific I’m not sure how relevant or universal their performance numbers are. They showed roughly the same CPU and memory use, with a 70% RPS rate compared to h2 over TLS 1.2.

He also entertained us with some “fun issues” from bugs and debugging sessions they’ve done and learned from. Awesome.

The story highlights the need for more tooling around QUIC to help developers and deployers.

Load balancers

Martin talked about load balancers and servers, and how they could or should communicate to work correctly with routing and connection IDs.

The room didn’t seem overly thrilled about this work and mostly offered other ways to achieve the same results.

Implicit Open

During the last session for the day and the entire meeting, was mt going through a few things that still needed discussion or closure. On stateless reset and the rather big bike shed issue: implicit open. The later being the question if opening a stream with ID N + 1 implicitly also opens the stream with ID N. I believe we ended with a slight preference to the implicit approach and this will be taken to the list for a consensus call.

Frame type extensibility

How should the QUIC protocol allow extensibility? The oldest still open issue in the project can be solved or satisfied in numerous different ways and the discussion waved back and forth for a while, debating various approaches merits and downsides until the group more or less agreed on a fairly simple and straight forward approach where the extensions will announce support for a feature which then may or may involve one or more new frame types (to be in a registry).

We proceeded to discuss other issues all until “closing time”, which was set to be 16:00 today. This was just two days of pushing forward but still it felt quite intense and my personal impression is that there were a lot of good progress made here that took the protocol a good step forward.

The facilities were lovely and Ericsson was a great host for us. The Thursday afternoon cakes were great! Thank you!

Coming up

There’s an IETF meeting in Montreal in July and there’s a planned next QUIC interim probably in New York in September.

curl, http2 and quic on the Changelog

Three years ago I talked on a changelog episode about curl just having turned 17 years old and what it has meant for me etc.

Fast forward three years, 146 changelog episodes later and now curl has turned 20 years and I was again invited and joined the lovely hosts of the changelog podcast, Adam and Jerod.

Changelog episode 299

We talked curl of course but we also spent time talking about where HTTP/2 is and how QUIC is coming around and a little about why and how its UDP nature makes things a little different. If you’re into either curl or web transport, I hope you’ll find it interesting.

The curl year 2017

I’m about to take an extended vacation for the rest of the year and into the beginning of the next, so I decided I’d sum up the year from a curl angle already now, a few weeks early. (So some numbers will grow a bit more after this post.)

2017

So what did we do this year in the project, how did curl change?

The first curl release of the year was version 7.53.0 and the last one was 7.57.0. In the separate blog posts on 7.55.0, 7.56.0 and 7.57.0 you’ll note that we kept up adding new goodies and useful features. We produced a total of 9 releases containing 683 bug fixes. We announced twelve security problems. (Down from 24 last year.)

At least 125 different authors wrote code that was merged into curl this year, in the 1500 commits that were made. We never had this many different authors during a single year before in the project’s entire life time! (The 114 authors during 2016 was the previous all-time high.)

We added more than 160 new names to the THANKS document for their help in improving curl. The total amount of contributors is now over 1660.

This year we truly started to use travis for CI builds and grew from a mere two builds per commit and PR up to nineteen (with additional ones run on appveyor and elsewhere). The current build set is a very good verification that that most things still compile and work after a PR is merged. (see also the testing curl article).

Mozilla announced that they too will use colon-slash-slash in their logo. Of course we all know who had it that in their logo first… =)

 

In March 2017, we had our first ever curl get-together as we arranged curl up 2017 a weekend in Nuremberg, Germany. It was very inspiring and meeting parts of the team in real life was truly a blast. This was so good we intend to do it again: curl up 2018 will happen.

curl turned 19 years old in March. In May it surpassed 5,000 stars on github.

Also in May, we moved over the official curl site (and my personal site) to get hosted by Fastly. We were beginning to get problems to handle the bandwidth and load, and in one single step all our worries were graciously taken care of!

We got curl entered into the OSS-fuzz project, and Max Dymond even got a reward from Google for his curl-fuzzing integration work and thanks to that project throwing heaps of junk at libcurl’s APIs we’ve found and fixed many issues.

The source code (for the tool and library only) is now at about 143,378 lines of code. It grew around 7,057 lines during the year. The primary reasons for the code growth were:

  1. the new libssh-powered SSH backend (not yet released)
  2. the new mime API (in 7.56.0) and
  3. the new multi-SSL backend support (also in 7.56.0).

Your maintainer’s view

Oh what an eventful year it has been for me personally.

The first interim meeting for QUIC took place in Japan, and I participated from remote. After all, I’m all set on having curl support QUIC and I’ll keep track of where the protocol is going! I’ve participated in more interim meetings after that, all from remote so far.

I talked curl on the main track at FOSDEM in early February (and about HTTP/2 in the Mozilla devroom). I’ve then followed that up and have also had the pleasure to talk in front of audiences in Stockholm, Budapest, Jönköping and Prague through-out the year.

 

I went to London and “represented curl” in the third edition of the HTTP workshop, where HTTP protocol details were discussed and disassembled, and new plans for the future of HTTP were laid out.

 

In late June I meant to go to San Francisco to a Mozilla “all hands” conference but instead I was denied to board the flight. That event got a crazy amount of attention and I received massive amounts of love from new and old friends. I have not yet tried to enter the US again, but my plan is to try again in 2018…

I wrote and published my h2c tool, meant to help developers convert a set of HTTP headers into a working curl command line.

The single occasion that overshadows all other events and happenings for me this year by far, was without doubt when I was awarded the Polhem Prize and got a gold medal medal from no other than his majesty the King of Sweden himself. For all my work and years spent on curl no less.

Not really curl related, but in November I was also glad to be part of the huge Firefox Quantum release. The biggest Firefox release ever, and one that has been received really well.

I’ve managed to commit over 800 changes to curl through the year, which is 54% of the totals and more commits than I’ve done in curl during a single year since 2005 (in which I did 855 commits). I explain this increase mostly on inspiration from curl up and the prize, but I think it also happened thanks to excellent feedback and motivation brought by my fellow curl hackers.

We’re running towards the end of 2017 with me being the individual who did most commits in curl every single month for the last 28 months.

2018?

More things to come!