Sloppily using SSL_OP_ALL

This story begins with a security flaw in OpenSSL. OpenSSL is truly a fundamental piece of software these days and I would go so far and say that lots of our critical infrastructure today is using it and needs it. Flaws in OpenSSL literally affect entire societies or at least risk doing so if the flaws can be exploited.

SSL/TLS is a rather old and well used protocol with many different implementations, both client and server side. In order to enhance how OpenSSL works with older SSL implementations or just those that have different views on how to implement things, OpenSSL provides an API call to tweak behaviors. The SSL_CTX_set_options function. In the curl project we’ve found good use of it for this purpose, and we use the generic define SSL_OP_ALL to switch on all “rather harmless” workarounds that OpenSSL offers. Rather harmless, that’s what the comment in the header file says.

Ok, enough background and dancing around the issue. The flaw that ignited my idea to write this blog post was a particular mistake made within SSL a long time ago within the code handling SSL 3.0 and TLS 1.0 protocols when speaking this protocol with a peer that could select the plain-text (see this explanation) – the problem is a generic one with the protocol so different SSL libraries would approach it differently. Ok, so OpenSSL fixed the flaw back in the days of 0.9.6d (we’re talking May 9th 2002). As a user of a library such as OpenSSL it always feels good to see them being on top of security problems and releasing fixes. It makes you feel that you’re being looked after to some extent.

Shortly thereafter, the OpenSSL developers discovered that some broken server implementations didn’t work with the work-around they had done…

Alas, on July 30th 2002 the OpenSSL team released version 0.9.6e which offered a way for programs to disable this particular work-around. By switching this off, it would of course make the protocol less secure again but it would inter-operate better with faulty servers. How do you switch off this security measure? By using the SSL_CTX_set_options function setting the bit SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS.

Ok, so far so good. But the next step is what changed everything from fine to not so fine anymore: they then added that new bit to the SSL_OP_ALL define.

Yes. In one blow every single application out there that use SSL_OP_ALL suddently started switching off this security measure as soon as they were recompiled against this version of OpenSSL. This change was made in 2002 and this is still like this today. It fixed the security problem from OpenSSL’s aspect, but the way the bit was later added to the SSL_OP_ALL define it was instead transferred to affect many programs.

In curl’s case, we were alerted about this flaw on January 19th 2012 and it resulted in a security advisory. I did a quick search for SSL_OP_ALL on koders.com and it is obvious that there are hundreds of programs out there still using this bitmask as-is. In the curl project we enabled the SSL_OP_ALL approach for the first time in the 7.10.6 release we did in July 2003. It was wrong already at the time we started using it. It turns out we’ve been enabling this flaw for almost nine years.

In the GnuTLS camp however, they simply stopped doing their work-around for this as soon as they started supporting TLS 1.1 due to the problems the work-around caused to some servers. This since TLS 1.1 isn’t vulnerable to the problem. OpenSSL 1.0.1 beta was released on Janurary 3 2012 and is the first OpenSSL version ever released to support TLS newer than 1.0… The browsers/NSS seem to have mitigated this problem in a different way and there’s a patch available for OpenSSL to implement the same work-around but there’s been no feedback on how or if it will be used.

News in curl 7.24.0

We continue doing curl releases roughly bi-monthly. This time we strike back with a release holding a few interesting new things that I thought are worth highlighting a little extra!

The most important and most depressing news about this release is the two security problems that were fixed. Never before have we released two security advisories for the same release.

Security fixes

The “curl URL sanitization vulnerability” is about how curl trusts user provided URL strings a little too much. Providing sneakily crafted URLs with embeded url-encoded carriage returns and line feeds users could trick curl to do un-intended actions when POP3, SMTP or IMAP protocols were used.

The “curl SSL CBC IV vulnerability” is about how curl inadvertently disables a security measurement in OpenSSL and thus weakens the security for some aspects of SSL 3.0 and TLS 1.0 connections.

Changes

We have a bunch of new changes added to curl and libcurl that some users might like:

  • curl has this ability to run a set of “extra commands” for a couple of protocols when doing a transfer – we call them “quote” operations. A while ago we introduced a way to mark commands within a series of quote commands as not being important if they fail and that the rest of the commands should be sent anyway. We mark such commands with a ‘*’-prefix. Starting now, we support that ‘*’-prefix for SFTP operations as well!
  • CURLOPT_DNS_SERVERS is a brand new option that allows programs to set which DNS server(s) libcurl should use to resolve host names. This function only works if libcurl was built to use a resolver backend that allows it to change DNS servers. That currently means nothing else but c-ares.
  • Now supports nettle for crypto functions. libcurl has long been supporting both OpenSSL and gcrypt backends for some of the crypto functions libcurl supports. The gcrypt made perfect sense when libcurl was built to use GnuTLS built to use gcrypt, but since GnuTLS recently has changed to using nettle by default the newly added support to use nettle with remove the need for an extra crypto link being linked for some users.
  • CURLOPT_INTERFACE was modified to allow “magic prefixes” for the application to tell that it uses an interface and not a host name and vice versa. The previous way would always test for both, which could lead to accidental (and slow) name resolves when the interface name isn’t currently present etc.
  • Active FTP sessions with the multi interface are now done much more non-blocking than before. Previously the multi interface would block while waiting for the server to connect back but it no longer does. A new option called CURLOPT_ACCEPTTIMEOUT_MS was added to allow programs to set how long libcurl should wait for accepting the server getting back.
  • Coming in from the Debian packaging guys, the configure script how features a new option called –enable-versioned-symbols that does exactly what it is called: it enables versioned symbols in the output libcurl.

Join the SPDY library development

Back in October I posted about my intentions to work on getting curl support for SPDY to be based on libspdy. I also got in touch with Thomas, the primary author of libspdy and owner of libspdy.org.

Unfortunately, he was ill already then and he was ill when I communicated with him what I wanted to see happen and I also posted a patch etc to him. He mentioned to me (in a private email) a lot of work they’ve done on the code in a private branch and he invited me to get access to that code to speed up development and allow me to use their code.

I never got any response on my eager “yes, please let me in!” mail and I’ve since mailed him twice over the period of the latest months and as there have been no responses I’ve decided to slowly ramp up my activities on my side while hoping he will soon get back.

I’ve started today by setting up the spdy-library mailing list. I hope to attract fellow interested hackers to join me on this. The goal is quite simply to make a libspdy that works for us. It is to be C89 code that is portable with an API that “makes sense”. I don’t know yet if we will work on libspdy as it currently looks, if Thomas’ team will push their updated work soon or if going with my current spindly fork off github is the way. I hope to get help to decide this!

Join the effort by simply adding yourself the mailing list and participate in the discussions: http://cool.haxx.se/cgi-bin/mailman/listinfo/spdy-library.

And a wiki on github.

Update: I’ve created a hub collecting all related info and pointers over at spindly.haxx.se.

Welcome!

Rosetta stone

How to figure out if a program uses curl? I get mails from users of it since the curl license is included somewhere and it includes my email address and very often that is the only address available…

To: Daniel Stenberg
Subject: Rosetta Stone Question

I am trying to install Rosetta Stone on my Mac but I am having trouble. The ReadMe says to contact the author, and this email was in the license info. Am I to understand that you are the author?

I don’t know exactly what Rosetta Stone is, but I guess it is the language learning software at www.rosettastone.com

Update

September 8, 2022. It is still alive!

getaddrinfo with round robin DNS and happy eyeballs

This is not news. This is only facts that seem to still be unknown to many people so I just want to help out documenting this to help educate the world. I’ll dance around the subject first a bit by providing the full background info…

round robin basics

Round robin DNS has been the way since a long time back to get some rough and cheap load-balancing and spreading out visitors over multiple hosts when they try to use a single host/service with static content. By setting up an A entry in a DNS zone to resolve to multiple IP addresses, clients would get different results in a semi-random manner and thus hitting different servers at different times:

server  IN  A  192.168.0.1
server  IN  A  10.0.0.1
server  IN  A  127.0.0.1

For example, if you’re a small open source project it makes a perfect way to feature a distributed service that appears with a single name but is hosted by multiple distributed independent servers across the Internet. It is also used by high profile web servers, like for example www.google.com and www.yahoo.com.

host name resolving

If you’re an old-school hacker, if you learned to do socket and TCP/IP programming from the original Stevens’ books and if you were brought up on BSD unix you learned that you resolve host names with gethostbyname() and friends. This is a POSIX and single unix specification that’s been around since basically forever. When calling gethostbyname() on a given round robin host name, the function returns an array of addresses. That list of addresses will be in a seemingly random order. If an application just iterates over the list and connects to them in the order as received, the round robin concept works perfectly well.

but gethostbyname wasn’t good enough

gethostbyname() is really IPv4-focused. The mere whisper of IPv6 makes it break down and cry. It had to be replaced by something better. Enter getaddrinfo() also POSIX (and defined in RFC 3943 and again updated in RFC 5014). This is the modern function that supports IPv6 and more. It is the shiny thing the world needed!

not a drop-in replacement

So the (good parts of the) world replaced all calls to gethostbyname() with calls to getaddrinfo() and everything now supported IPv6 and things were all dandy and fine? Not exactly. Because there were subtleties involved. Like in which order these functions return addresses. In 2003 the IETF guys had shipped RFC 3484 detailing Default Address Selection for Internet Protocol version 6, and using that as guideline most (all?) implementations were now changed to return the list of addresses in that order. It would then become a list of hosts in “preferred” order. Suddenly applications would iterate over both IPv4 and IPv6 addresses and do it in an order that would be clever from an IPv6 upgrade-path perspective.

no round robin with getaddrinfo

So, back to the good old way to do round robin DNS: multiple addresses (be it IPv4 or IPv6 or both). With the new ideas of how to return addresses this load balancing way no longer works. Now getaddrinfo() returns basically the same order in every invoke. I noticed this back in 2005 and posted a question on the glibc hackers mailinglist: http://www.cygwin.com/ml/libc-alpha/2005-11/msg00028.html As you can see, my question was delightfully ignored and nobody ever responded. The order seems to be dictated mostly by the above mentioned RFCs and the local /etc/gai.conf file, but neither is helpful if getting decent round robin is your aim. Others have noticed this flaw as well and some have fought compassionately arguing that this is a bad thing, while of course there’s an opposite side with people claiming it is the right behavior and that doing round robin DNS like this was a bad idea to start with anyway. The impact on a large amount of common utilities is simply that when they go IPv6-enabled, they also at the same time go round-robin-DNS disabled.

no decent fix

Since getaddrinfo() now has worked like this for almost a decade, we can forget about “fixing” it. Since gai.conf needs local edits to provide a different function response it is not an answer. But perhaps worse is, since getaddrinfo() is now made to return the addresses in a sort of order of preference it is hard to “glue on” a layer on top that simple shuffles the returned results. Such a shuffle would need to take IP versions and more into account. And it would become application-specific and thus would have to be applied to one program at a time. The popular browsers seem less affected by this getaddrinfo drawback. My guess is that because they’ve already worked on making asynchronous name resolves so that name resolving doesn’t lock up their processes, they have taken different approaches and thus have their own code for this. In curl’s case, it can be built with c-ares as a resolver backend even when supporting IPv6, and c-ares does not offer the sort feature of getaddrinfo and thus in these cases curl will work with round robin DNSes much more like it did when it used gethostbyname.

alternatives

The downside with all alternatives I’m aware of is that they aren’t just taking advantage of plain DNS. In order to duck for the problems I’ve mentioned, you can instead tweak your DNS server to respond differently to different users. That way you can either just randomly respond different addresses in a round robin fashion, or you can try to make it more clever by things such as PowerDNS’s geobackend feature. Of course we all know that A) geoip is crude and often wrong and B) your real-world geography does not match your network topology.

happy eyeballs

During this period, another connection related issue has surfaced. The fact that IPv6 connections are often handled as a second option in dual-stacked machines, and the fact is that IPv6 is mostly present in dual stacks these days. This sadly punishes early adopters of IPv6 (yes, they unfortunately IPv6 must still be considered early) since those services will then be slower than the older IPv4-only ones.

There seems to be a general consensus on what the way to overcome this problem is: the Happy Eyeballs approach. In short (and simplified) it recommends that we try both (or all) options at once, and the fastest to respond wins and gets to be used. This requires that we resolve A and AAAA names at once, and if we get responses to both, we connect() to both the IPv4 and IPv6 addresses and see which one is the fastest to connect.

This of course is not just a matter of replacing a function or two anymore. To implement this approach you need to do something completely new. Like for example just doing getaddrinfo() + looping over addresses and try connect() won’t at all work. You would basically either start two threads and do the IPv4-only route in one and do the IPv6 route in the other, or you would have to issue non-blocking resolver calls to do A and AAAA resolves in parallel in the same thread and when the first response arrives you fire off a non-blocking connect() …

My point being that introducing Happy Eyeballs in your good old socket app will require some rather major remodeling no matter what. Doing this will most likely also affect how your application handles with round robin DNS so now you have a chance to reconsider your choices and code!