Tag Archives: IETF

Http2 interim meeting NYC

On June 5th, around thirty people sat down around a huge table in a conference room on the 4th floor in the Google offices in New York City, with a heavy rain pouring down outside.

It was time for another IETF http2 interim meeting. The attendees were all participants in the HTTPbis work group and came from a wide variety of companies and countries. The major browser vendors were represented there, and so were operators and big service providers and some proxy people. Most of the people who have been speaking up on the mailing list over the last year or so, unfortunately with a couple of people notably absent. (And before anyone asks, yes we are a group where the majority is old males like me.)

Most people present knew many of the others already, which helped to create a friendly familiar spirit and we quickly got started on the Thursday morning working our way through the rather long lits of issues to deal with. When we had our previous interim meeting in London, I think most of us though we would’ve been further along today but recent development and discussions on the list had actually brought back a lot of issues we though we were already done with and we now reiterated a whole slew of subjects. We weren’t allowed to take photographs indoors so you won’t see any pictures of this opportunity from me here.

Google offices building logo

We did close many issues and I’ll just quickly mention some of the noteworthy ones here…

Extensions

We started out with the topic of “extensions”. Should we revert the decision from Zurich (where it was decided that we shouldn’t allow extensions in http2) or was the current state of the protocol the right one? The arguments for allowing extensions included that we’d keep getting requests for new things to add unless we have a way and that some of the recent stuff we’ve added really could’ve been done as extensions instead. An argument against it is that it makes things much simpler and reliable if we just document exactly what the protocol has and is, and removing “optional” behavior from the protocol has been one of the primary mantas along the design process.

The discussion went back and forth for a long time, and after almost three hours we had kind of a draw. Nobody was firmly against “the other” alternative but the two sides also seemed to have roughly the same amount of support. Then it was yet again time for the coin toss to guide us. Martin brought out an Australian coin and … the next protocol draft will allow extensions. Again. This also forces implementation to have to read and skip all unknown frames it receives compared to the existing situation where no unknown frames can ever occur.

BLOCKED as an extension

A rather given first candidate for an extension was the BLOCKED frame. At the time BLOCKED was added to the protocol it was explicitly added into the spec because we didn’t have extensions – and it is now being lifted out into one.

ALTSVC as an extension

What received slightly more resistance was the move to move out the ALTSVC frame as well. It was argued that the frame isn’t mandatory to support and therefore easily can be made into an extension.

Simplified padding

Another small change of the wire format since draft-12 was the removal of the high byte for padding to simplify. It reduces the amount you can pad a single frame but you can easily pad more using other means if you really have to, and there were numbers presented that said that 255 bytes were enough with HTTP 1.1 already so probably it will be enough for version 2 as well.

Schedule

There will be a new draft out really soon: draft -13. Martin, our editor of the spec, says he’ll be able to ship it in a week. That is intended to be the last draft, intended for implementation and it will then be expected to get deployed rather widely to allow us all in the industry to see how it works and be able to polish details or wordings that may still need it.

We had numerous vendors and HTTP stack implementers in the room and when we discussed schedule for when various products will be able to see daylight. If we all manage to stick to the plans. we may just have plenty of products and services that support http2 by the September/October time frame. If nothing major is found in this latest draft, we’re looking at RFC status not too far into 2015.

Meeting summary

I think we’re closing in for real now and I have good hopes for the protocol and our progress to a really wide scale deployment across the Internet. The HTTPbis group is an awesome crowd to work with and I had a great time. Our hosts took good care of us and made sure we didn’t lack any services or supplies. Extra thanks go to those of you who bought me dinners and to those who took me out to good beer places!

My http2 document

Yeah, it will now become somewhat out of date and my plan is to update it once the next draft ships. I’ll also do another http2 presentation already this week so I hope to also post an updated slide set soonish. Stay tuned!

Wireshark

My plan is to cooperate with the other Wireshark hackers and help making sure we have the next draft version supported in Wireshark really soon after its published.

curl and nghttp2

Most of the differences introduced are in the binary format so nghttp2 will need to be updated again – it is the library curl uses for the wire format of http2. The curl parts will need some adjustments, for example for Content-Encoding gzip that no longer is implicit but there should be little to do in the curl code for this draft bump.

Bye bye RFC 2616

In August 2007 the IETF HTTPbis work group started to make an update to the HTTP 1.1 specification RFC 2616 (from June 1999) which already was an update to RFC 2068 from 1996. I wasn’t part of the effort back then so I didn’t get to hear the back chatter or what exactly the expectations were on delivery time and time schedule, but I’m pretty sure nobody thought it would take almost seven long years for the update to reach publication status.

On June 6 2014 when RFC 7230 – RFC 7235 were released, the single 176 page document has turned into 6 documents with a total size that is now much larger, and there’s also a whole slew of additional related documents released at the same time.

2616 is deeply carved into my brain so it’ll take some time until I unlearn that, plus the fact that now we need to separate our pointers to one of those separate document instead of just one generic number for the whole thing. Source codes and documents all over now need to be carefully updated to instead refer to the new documents.

And the HTTP/2 work continues to progress at high speed. More about that in a separate blog post soon.

More details on the road from RFC2616 until today can be found in Mark Nottingham’s RFC 2616 is dead.

Less plain-text is better. Right?

Every connection and every user on the Internet is being monitored and snooped at to at least some extent every now and then. Everything from the casual firesheep user in your coffee shop, an admin in your ISP, your parents/kids on your wifi network, your employer on the company network, your country’s intelligence service in a national network hub or just a random rogue person somewhere in the middle of all this.

My involvement in HTTP make me mostly view and participate in this discussion with this protocol primarily in mind, but the discussion goes well beyond HTTP and the concepts can (and will?) be applied to most Internet protocols in the future. You can follow some of these discussions in the httpbis group, the UTA group, the tcpcrypt list on twitter and elsewhere.

IETF just published RFC 7258 which states:

Pervasive Monitoring Is a Widespread Attack on Privacy

Passive monitoring

Most networking surveillance can be done entirely passively by just running the correct software and listening in on the correct cable. Because most internet traffic is still plain-text and readable by anyone who wants to read it when the bytes come flying by. Like your postman can read your postcards.

Opportunistic?

Recently there’s been a fierce discussion going on both inside and outside of IETF and other protocol and standards groups about doing “opportunistic encryption” (OE) and its merits and drawbacks. The term, which in itself is being debated and often is said to be better called “opportunistic keying” (OK) instead, is about having protocols transparently (invisible to the user) upgrade plain-text versions to TLS unauthenticated encrypted versions of the protocols. I’m emphasizing the unauthenticated word there because that’s a key to the debate. Recently I’ve been told that the term “opportunistic security” is the term to use instead…

In the way of real security?

Basically the argument against opportunistic approaches tends to be like this: by opportunistically upgrading plain-text to unauthenticated encrypted communication, sysadmins and users in the world will consider that good enough and they will then not switch to using proper, strong and secure authentication encryption technologies. The less good alternative will hamper the adoption of the secure alternative. Server admins should just as well buy a cert for 10 USD and use proper HTTPS. Also, listeners can still listen in on or man-in-the-middle unauthenticated connections if they capture everything from the start of the connection, including the initial key exchange. Or the passive listener will just change to become an active party and this unauthenticated way doesn’t detect that. OE doesn’t prevent snooping.

Isn’t it better than plain text?

The argument for opportunism here is that there will be nothing to the user that shows that it is “upgrading” to something less bad than plain text. Browsers will not show the padlock, clients will not treat the connection as “secure”. It will just silently and transparently make passive monitoring of networks much harder and it will force actors who truly want to snoop on specific traffic to up their game and probably switch to active monitoring for more cases. Something that’s much more expensive for the listener. It isn’t about the cost of a cert. It is about setting up and keeping the cert up-to-date, about SNI not being widely enough adopted and that we can see only 30% of all sites on the Internet today use HTTPS – for these reasons and others.

HTTP:// over TLS

In the httpbis work group in IETF the outcome of this debate is that there is a way being defined on how to do HTTP as specified with a HTTP:// URL – that we’ve learned is plain-text – over TLS, as part of the http2 work. Alt-Svc is the way. (The header can also be used to just load balance HTTP etc but I’ll ignore that for now)

Mozilla and Firefox is basically the only team that initially stands behind the idea of implementing this in a browser. HTTP:// done over TLS will not be seen nor considered any more secure than ordinary HTTP is and users will not be aware if that happens or not. Only true HTTPS connections will get the padlock, secure cookies and the other goodies true HTTPS sites are known and expected to get and show.

HTTP:// over TLS will just silently send everything through TLS (assuming that it can actually negotiate such a connection), thus making passive monitoring of the network less easy.

Ideally, future http2 capable servers will only require a config entry to be set TRUE to make it possible for clients to do OE on them.

HTTPS is the secure protocol

HTTP:// over TLS is not secure. If you want security and privacy, you should use HTTPS. This said, MITMing HTTPS transfers is still a widespread practice in certain network setups…

TCPcrypt

I find this initiative rather interesting. If implemented, it removes the need for all these application level protocols to do anything about opportunistic approaches and it could instead be handled transparently on TCP level! It still has a long way to go though before we will see anything like this fly in real life.

The future will tell

Is this just a fad that will get no adoption and go away or is it the beginning of something that will change how we do protocols in the future? Time will tell. Many harsh words are being exchanged over this topic in many a debate right now…

(I’m trying to stick to “HTTP:// over TLS” here when referring to doing HTTP OE/OK over TLS. This is partly because RFC2818 that describes how to do HTTPS uses the phrase “HTTP over TLS”…)

http2 explained

http2 front page

I’m hereby offering you all the first version of my document explaining http2, the protocol. It features explanations on the background, basic fundamentals, details on the wire format and something about existing implementations and what’s to expect for the future.

The full PDF currently boasts 27 pages at version 1.0, but I plan to keep up with the http2 development going further and I’m also kind of thinking that I will get at least some user feedback, and I’ll do subsequent updates to improve and extend the document over time. Of course time will tell how good that will work.

The document is edited in libreoffice and that file is available on github, but ODT is really not a format suitable for patches and merges so I hope we can sort out changes with filing issues and sending emails.

Reducing the Public Suffix pain?

Let me introduce you to what I consider one of the worst hacks we have in current and modern internet protocols: the Public Suffix List (PSL). This is a list (maintained by Mozilla) with domains that have some kind administrative setup or arrangement that makes sub-domains independent. For example, you can’t be allowed to set cookies for “*.com” because .com is a TLD that has independent domains. But the same thing goes for “*.co.uk” and there’s no hint anywhere about this – except for the Public Suffix List. Then, take that simple little example and extrapolate to a domain system that grows with several new TLDs every month and more. The PSL is now several thousands of entries long.

And cookies isn’t the only thing this is used for. Another really common and perhaps even more important use case is for wildcard matches in TLS server certificates. You should not be allowed to buy and use a cert for “*.co.uk” but you can for “*.yourcompany.co.uk”…

Not really official but still…

If you read the cookie RFC or the spec for how to do TLS wildcard certificate matching you won’t read any line putting it crystal clear that the Suffix List is what you must use and I’m sure different browser solve this slightly differently but in practice and most unfortunately (if you ask me) you must either use the list or make your own to be fully compliant with how the web works 2014.

curl, wget and the PSL

In curl and libcurl, we have so far not taken the PSL into account which is by choice since I’ve not had any decent way to handle it and there are lots of embedded and other use cases that simply won’t be able to cope with that large PSL chunk.

Wget hasn’t had any PSL awareness either, but the recent weeks this has been brought up on the wget list and more attention has been given to this. Work has been initiated to do something about it, which has lead to…

libpsl

Tim Rühsen took the baton and started the libpsl project and its associated mailing list, as a foundation for something for Wget to use to get PSL awareness.

I’ve mostly cheered the effort so far and said that I wouldn’t mind building on this to enhance curl in the future if it just gets a suitable (liberal enough) license and it seems to go in that direction. For curl’s sake, I would like to get a conditional dependency on this so that people without particular size restrictions can use this, and people on more embedded and special-purpose situations can continue to build without PSL support.

If you’re interested in helping out in curl and libcurl in this area, feel most welcome!

dbound

Meanwhile, the IETF has set up a new mailing list called dbound for discussions around PSL and similar issues and it seems very timely!

http2 in curl

While the first traces of http2 support in curl was added already back in September 2013 it hasn’t been until recently it actually was made useful. There’s been a lot of http2 related activities in the curl team recently and in the late January 2014 we could run our first command line inter-op tests against public http2 (draft-09) servers on the Internet.

There’s a lot to be said about http2 for those not into its nitty gritty details, but I’ll focus on the curl side of this universe in this blog post. I’ll do separate posts and presentations on http2 “internals” later.

A quick http2 overview

http2 (without the minor version, as per what the IETF work group has decided on) is a binary protocol that allows many logical streams multiplexed over the same physical TCP connection, it features compressed headers in both directions and it has stream priorities and more. It is being designed to maintain the user concepts and paradigms from HTTP 1.1 so web sites don’t have to change contents and web authors won’t need to relearn a lot. The web will not break because of http2, it will just magically work a little better, a little smoother and a little faster.

In libcurl we build http2 support with the help of the excellent library called nghttp2, which takes care of all the binary protocol details for us. You’ll also have to build it with a new enough version of the SSL library of your choice, as http2 over TLS will require use of some fairly recent TLS extensions that not many older releases have and several TLS libraries still completely lack!

The need for an extension is because with speaking TLS over port 443 which HTTPS implies, the current and former web infrastructure assumes that we will speak HTTP 1.1 over that, while we now want to be able to instead say we want to talk http2. When Google introduced SPDY then pushed for a new extension called NPN to do this, which when taken through the standardization in IETF has been forked, changed and renamed to ALPN with roughly the same characteristics (I don’t know the specific internals so I’ll stick to how they appear from the outside).

So, NPN and especially ALPN are fairly recent TLS extensions so you need a modern enough SSL library to get that support. OpenSSL and NSS both support NPN and ALPN with a recent enough version, while GnuTLS only supports ALPN. You can build libcurl to use any of these threes libraries to get it to talk http2 over TLS.

http2 using libcurl

(This still describes what’s in curl’s git repository, the first release to have this level of http2 support is the upcoming 7.36.0 release.)

Users of libcurl who want to enable http2 support will only have to set CURLOPT_HTTP_VERSION to CURL_HTTP_VERSION_2_0 and that’s it. It will make libcurl try to use http2 for the HTTP requests you do with that handle.

For HTTP URLs, this will make libcurl send a normal HTTP 1.1 request with an offer to the server to upgrade the connection to version 2 instead. If it does, libcurl will continue using http2 in the clear on the connection and if it doesn’t, it’ll continue using HTTP 1.1 on it. This mode is what Firefox and Chrome will not support.

For HTTPS URLs, libcurl will use NPN and ALPN as explained above and offer to speak http2 and if the server supports it. there will be http2 sweetness from than point onwards. Or it selects HTTP 1.1 and then that’s what will be used. The latter is also what will be picked if the server doesn’t support ALPN and NPN.

Alt-Svc and ALTSVC are new things planned to show up in time for http2 draft-11 so we haven’t really thought through how to best support them and provide their features in the libcurl API. Suggestions (and patches!) are of course welcome!

http2 with curl

Hardly surprising, the curl command line tool also has this power. You use the –http2 command line option to switch on the libcurl behavior as described above.

Translated into old-style

To reduce transition pains and problems and to work with the rest of the world to the highest possible degree, libcurl will (decompress and) translate received http2 headers into http 1.1 style headers so that applications and users will get a stream of headers that look very much the way you’re used to and it will produce an initial response line that says HTTP 2.0 blabla.

Building (lib)curl to support http2

See the README.http2 file in the lib/ directory.

This is still a draft version of http2!

I just want to make this perfectly clear: http2 is not out “for real” yet. We have tried our http2 support somewhat at the draft-09 level and Tatsuhiro has worked on the draft-10 support in nghttp2. I expect there to be at least one more draft, but perhaps even more, before http2 becomes an official RFC. We hope to be able to stay on the frontier of http2 and deliver support for the most recent draft going forward.

PS. If you try any of this and experience any sort of problems, please speak to us on the curl-library mailing list and help us smoothen out whatever problem you got!

cURL

HTTPbis design team meeting London

I’m writing this just hours after the HTTPbis design team meeting in London 2014 has ended.

Around 30 people attended the meeting i Mozilla’s central London office. The fridge was filled up with drinks, the shelves were full of snacks and goodies. The day could begin. This is the Saturday after the IETF89 week so most people attending had already spent the whole or parts of the week before here in London doing other HTTP and network related work. The HTTPbis sessions at the IETF itself were productive and had already pushed us forward.

We started at 9:30 and we quickly got to work. Mark Nottingham guided us through the day with usual efficiency.

We all basically hang out in a huge room, some in chairs, some in sofas and a bunch of people on the floor or just standing up. We had mikes passed around and the http2 discussions were flowing back and forth depending on the topics and what people felt about them. Some of the issues that were nailed down this time and will end up detailed in the upcoming draft-11 are (strictly speaking, we only discussed the things and formed opinions, as by IETF guidelines we can’t decide things on an offline meeting like this):

  • Priorities of streams will have a dependency graph or direction, making individual  streams less or more important than other
  • A client can send headers without compression and tell the proxy that the header shouldn’t be compressed – used a way to mitigate some of the compression security problems
  • There will be no TLS renegotiation allowed mid-session. Basically a client will have to tear down the connection and negotiate again if suddenly a need to use a client certificate arises.
  • Alt-Svc is the way forward so ALTSVC will appear a new frame in draft-11. This is the way to signal to an application that there is another “route” tIMG_20140308_100453o the same content on the same server. This will allow for what is popularly known as “opportunistic encryption” or at least one sort of that. In short, you can do “plain-text” HTTP over a TLS connection using this…
  • We decided that a server should support gzip contents from clients

There were some other things too handled, but I believe those are the main changes. When the afternoon started to turn long, beers and other beverages were brought out and we did enjoy a relaxing social finale of the day before we split up in smaller groups and headed out in the busy London night to get dinner…

Thanks everyone for a great day. I also appreciated meeting several people in real-life I never met before, only discussed with and read emails from online and of course some old friends I hadn’t seen in a long time!

Oh, there’s also a new rough time frame for http2 going forward. Nearest in time would be the draft-11 at the end of March and another interim in the beginning of June (Boston?).

As a reminder, here’s what was happened for draft-10, and here is http2 draft-10.

Out of all people present today, I believe Mozilla was the company with the largest team (8 attendees) – funnily enough none of us Mozillians there actually work in this office or even in this country.

HTTP2 – the next step

IETFThe HTTPbis working group of the IETF had an interim meeting in Zurich January 22nd to 24th. I participated from remote and I listened in on the discussions over webex and followed the jabber room while the meetings were going on, addressing HTTP2 protocol issues one by one ironing out quirks and progressing forward.

I won’t bore you with details why I wasn’t present in Zurich.

Here’s a couple of quick and brief reflections from my perspective:

Listening in from remote like this is not at all adequately compensating for not being there. A room full of people discussing something is really hard to follow from remote and completely impossible to interact with. It is better than not being able to listen in at all, but it is certainly not a replacement for being there.

It is amazing how much faster people can come to conclusions and fix issues when being in the same room. Issues that have been lingering in the tracker for a very long time could be dealt with and closed within minutes. Things like what to call the protocol in ALPN or to remove the ability to switched off flow control. Not all issues of course…

HTTP2 draft-09 that soon will become draft-10 to reflect the updates from this meeting and more, is from my perspective quite far in its process. It is clearly at a point that seems to be OK with most people and the discussions are now just about details. Of course the devil is in the details and I’m not saying it can’t take a long time to settle on them, but the structure and main concepts of the protocol are probably now established.

There were not very many proxy or server people at the interim. Most of the people seemed to be client-side oriented and some service oriented. I’m personally client-side biased myself but I hope this doesn’t lead to us deciding on things that the “other side” will have problems with down the line.

Firefox nightly supports HTTP2 draft-09 (for https:// URLs) and twitter supports it server side. Enable it in the browser by entering “about:config” in the URL bar and change the config entry called “network.http.spdy.enabled.http2draft” to true. Done.

Some of the biggest HTTP2 changes brought up compared to what draft-09 says include:

  • no more ability to switch off flow control
  • the prioritization field/concept “weighted dependency tree approach”
  • >= TLS 1.2 with ephemeral ciphers
  • MUST not use TLS compression
  • tolerant to TLS false start or at least must accept/buffer application layer data
  • padding

There was also a whole lot of discussions about TLS for http:// urls, proxys, MITM for SSL, opportunistic encryption and more but I believe most of those issues remained at the same position as before – I missed out on parts of the last afternoon so I may have missed some details. It’ll all be revealed in draft-10 and the mailing list I’m sure!

Update: the minutes from the interim meeting.

http2-drawing

dotdot removal in libcurl 7.32.0

Allow as much as possible and only sanitize what’s absolutely necessary.

That has basically been the rule for the URL parser in curl and libcurl since the project was started in the 90s. The upside with this is that you can use curl to torture your web servers with tests and you can handicraft really imaginary stuff to send and thus subsequently to receive. It kind of assumes that the user truly gives curl a URL the user wants to use.

Why would you give curl a broken URL?

But of course life and internet protocols, and perhaps in particular HTTP, is more involved than that. It soon becomes more complicated.

Redirects

Everyone who’s writing a web user-agent based on RFC 2616 soon faces the fact that redirects based on the Location: header is a source of fun and head-scratching. It is defined in the spec as only allowing “absolute URLs” but the reality is that they were also provided as relative ones by web servers already from the start so the browsers of course support that (and the pending HTTPbis document is already making this clear). curl thus also adopted support for relative URLs, meaning the ability to “merge” or “add” a relative URL onto a previously used absolute one had to be implemented. And even illegally constructed URLs are done this way and in the grand tradition of web browsers, they have not tried to stop users from doing bad things, they have instead adapted and now instead try to convert it to what the user could’ve meant. Like for example using a white space within the URL you send in a Location: header. Even curl has to sanitize that so that it works more like the browsers.

Relative path segments

The path part of URLs are truly to be seen as a path, in that it is a hierarchical scheme where each slash-separated part adds a piece. Like “/first/second/third.html”

As it turns out, you can also include modifiers in the path that have special meanings. Like the “..” (two dots or periods next to each other) known from shells and command lines to mean “one directory level up” can also be used in the path part of a URL like “/one/three/../two/three.html” which equals “/one/two/three.html” when the dotdot sequence is handled. This dot removal procedure is documented in the generic URL specification RFC 3986 (published January 2005) and is completely protocol agnostic. It works like this for HTTP, FTP and every other protocol you provide a path part for.

In its traditional spirit of just accepting and passing along, curl didn’t use to treat “dotdots” in any particular way but handed it over to the server to deal with. There probably aren’t that terribly many such occurrences either so it never really caused any problems or made any users hit any particular walls (or they were too shy to report it); until one day back in February this year… so we finally had to do something about this. Some 8 years after the spec saying it must be done was released.

dotdot removal

Alas, libcurl 7.32.0 now features (once it gets released around August 12th) full traversal and handling of such sequences in the path part of URLs. It also includes single dot sequences like in “/one/./two”. libcurl will detect such uses and convert the path to a sequence without them and continue on. This of course will cause a limited altered behavior for the possible small portion of users out there in the world who would use dotdot sequences and actually want them to get sent as-is the way libcurl has been doing it. I decided against adding an option for disabling this behavior, but of course if someone would experience terrible pain and can reported about it convincingly to us we could possible reconsider that decision in the future.

I suspect (and hope) this will just be another little change along the way that will make libcurl act more standard and more like the browsers and thus cause less problems to users but without people much having to care about how or why.

Further reading: the dotdot.c file from the libcurl source tree!

Bonus kit

A dot to dot surprise drawing for you and your kids (click for higher resolution)

curl dot-to-dot