Category Archives: Network

Internet. Networking.

murl for extended curlness

I’m a firm believer in the old unix mantra of letting each tool do its job and do it well, and pass on the rest of the work to the next tool. I’ve always stated that curl should remain this way and that it should remain within its defined walls and not try to do everything.

But time passes and more and more ideas are thrown up in the air, or in some cases directly at me, and the list of things that we could do but don’t due to this philosophical limit of remaining focused has grown. It currently includes at least:

  • metalink support
  • recursive HTML downloads
  • recursive/wildcard FTP transfers
  • bittorrent support
  • automatic proxy configuration
  • simultaneous/parallel download support

Educated readers of course immediately detect that this list (if implemented) would make a tool that basically does what wget already does (and a lot more) and I’ve explicitly said for a decade that curl is not a wget clone. Maybe it is time for us (me?) to reevaluate that sentiment – at least in some sense.

I don’t want to sacrifice the concepts that have worked so fine for curl under so many years, so I’m still firmly against stuffing all this into curl (or libcurl). That simply will not happen with me at the wheel.

A much more interesting alternative would be to instead start working on a second tool within the curl project: murl. A tool that does basically everything that curl already does, but also opens the doors for adding just about everything else we can cram in and that is still related to data transfers. That would include, but not be restricted to, all the fancy stuff mentioned in the list above!

No the name murl is not set in stone, nor is this whole idea anything but plain and early thoughts thrown out at this point so it may or may not actually take off. It will probably depend on if I get support and help from fellow hackers to get started and moving along.

cURL

Windows localhost slowness

A client of mine and myself ran a bunch of tests doing FTP and SFTP transfers against localhost to measure how fast our custom solution is compared to a set of existing solutions.

The specific results from this aren’t what caught my eyes, mostly because they’re currently still only used for comparisons and to measure relative improvements, but it was instead the relative speed differences between the tests run on Mac 10.5.5, on Windows XP SP3 and on Linux 2.6.26.

Some of the Windows transfers took a magnitude more time than the others. Ten times longer. Since we could see this across multiple tests each being run multiple times and it was also visible with third party tools, the only conclusion I can draw from this is that Windows for some reason has a much slower localhost.

Does any reader of this have any further knowledge or details to share on this topic? Anyone knows if more recent Windows versions do this any better?

It should be noted that on Windows the ssh server used was running in cygwin, which may account for some of the slowness as cygwin isn’t really known for being blazingly fast…

Update:

Three friends responded to this question:

The first mention that he’d got problems on windows in the past where 127.0.0.1 worked but ‘localhost’ didn’t which might indicate that localhost for some reason would be treated differently.

The second said that it has been mentioned that Windows Vista has significant TCP improvements compared to older versions for which version the TCP/IP stack was rewritten completely.

Pierre (at Microsoft) pointed out that on Vista localhost resolves first to ::1 (ipv6) only, which may explain why some people experience quirks on Vista at least. This test was however done on XP…

More suggested HTTP fun

I’ve already previously expressed my deepest dislike with where the HTML5 work is going, and just yesterday two new internet-drafts appeared on ietf.org that spurred up discussions all around. They’re claimed to be “part of our effort to remove from HTML5 sections that are more appropriate elsewhere” but I’m thinking they’re rather inappropriate everywhere…

The first one named Content-Type Processing Model hits a subject that I’ve been over before, namely the stupidity of having web browsers guess the content based on what it looks like. IE introduced the “I really mean it property“, the HTML5 team wants to standardize the way of the guessing. Personally, I think the world of web will become a better place if the browsers would instead become stricter and more closer follow what the servers actually say the contents is, and then all users would complain to the site admins if things are wrong and then things should be fixed.

Guessing content types allows for sloppy behaviors, it makes it harder to write browsers for the web and it still features a significant risk of guessing wrong.

The second draft propagates for the new HTTP header “Origin”, which according to the authors would help to guard servers against CSRF (“Cross-Site Request Forgery“). The main author says 3% of users on the Internet gets their Referer header stripped while virtually none gets Origin stripped. I claim this is a bogus argument since they strip Referer beacause it is a known and established header and Origin is not. I also completely fail to see the goodness of this and based on several of the other responses on the ieth-http-wg mailing list I am not alone…

IETF http-state group created

Over at the IETF another group was just created named http-state (with an associated mailing list) with the specific goal:

Ultimately, the purpose of this group is to create an updated HTTP State Management Mechanism RFC (aka cookies) that will supersede the Netscape spec, RFCs 2109, 2964, 2965 then add in real-world usage (e.g. HTTPOnly), and possibly add in additional features and possibly merge in draft-broyer-http-cookie-auth-00.txt and draft-pettersen-cookie-v2-03.txt.

I’ve joined the list and I hope to follow and participate in this, as I believe the current state of HTTP cookies is a rather sorry mess and the Netscape spec is still what closest describes how cookies work in the wild. Of course I’ll do it with my libcurl experience in my luggage.

While it perhaps would be cool to join the group in more formal way, there’s no way for me to participate in that IETF meeting in San Francisco in March.

Fun with executable extensions in viewvc

A few years ago I wrote up silly little perl script (let’s call it script.pl) that would fetch a page from a site that returns a “random URL off the internet”. I needed a range of URLs for a test program of mine and just making up a thousand or so URLs is tricky. Thus I wrote this script that I would run and allow to get a range of URLs on each invoke and then run it again later and append to the log file. It wasn’t a fancy script, but it solved my task.

The script was part of a project I got funded to work on, that was improving libcurl back in 2005/2006 so I thought adding and committing the script to CVS felt only natural and served a good purpose. To allow others to repeat what I did.

Fast forward to late 2008. The script is now browsable via viewvc on a site that… eh, doesn’t have “.pl” disabled as a cgi extension in its config! The result of course is that each time someone tries to view the script using the web interface, the web server invokes the script locally!

All of a sudden I get a mail from someone, who apparently is admin or something of the site this old script was using, and he mentions that a machine on our network is hammering his site with many requests per second (38 requests/second apparently) and asked me to stop this. It turns out a search engine crawler has indexed the viewvc output several times, and now some 8 processes or so were running this script.pl and they were all looping around getting a page, outputting the URL, getting another page…

While I think 38 requests second is a bit low to even be considered a DOS, it certainly wasn’t intended nor friendly and I was greatly surprised when I slowly realized how it all came to end up like this! Man I suck! It reminds me of my other extension mess from just a few months ago…

Maybe I’ll learn how to do things right in the future when I grow up!

10G and Direct Cache Access

As some of you might know, I currently work with a client doing 10G network stuff. 10G as in 10 gigabit/second Ethernet. That’s a lot of data. It’s actually so much data it’s hard to even generate network loads of this magnitude to be able to do good tests, as a typical server using SATA harddrives hardly fills a one gigabit pipe due to “slow” I/O: ordinary SATA drives don’t even reach 100MB/sec. You need RAID solutions or putting the entire thing in RAM first. So generating 10 gigabit network loads thus requires some extraordinary solutions.

Having a server that tries to “eat” a line speed 10G is a big challenge, and in fact we can’t do it as 1.25 GB/sec is just too much and yet we run a quad-core 3.00GHz Xeon thing here which is at least near the best “off-the-shelf” CPU/server you can get at the moment. Of course our software does a little bit more with the data than just receiving it as well.

Anyway, recently I’ve been experimenting with 10G cards from Myricom and when trying to maximize our performance with these beauties, I fell over the three-letter acronym DCA. Direct Cache Access. A terribly overused acronym consisting of often-used words make it hard to research and learn about! But here’s a great document describing some of the gory details:

Direct Cache Access for High Bandwidth Network I/O

Summary: it is an Intel technology for delivering data directly into the CPU’s cache, to reduce the bandwidth requirement to memory (note: it only decreases the bandwidth requirement at that moment, not the total requirement as it still needs to be read from memory into the cache, as noted in a comment below). Using this technique it should be possible to drastically reduce the time for getting the traffic. Support for this tech has been added to the Linux kernel as well since a while back.

It seems DCA is (only?) implemented in Intel’s 7300 chipset family which seems to only exist for Xeon 7300 and 7400. Too bad we don’t have one of these monsters so I haven’t been able to try this out for real yet…

Currently we can generate 10G network loads using two different approaches: one is uploading a specially crafted binary blob embedded with the FPGA image to a Xilinx-equipped board with a 10G MAC that then can do some fiddling with the packages (like increasing a counter) so that they aren’t all 100% identical. It makes a pretty good load test, even if the traffic isn’t at all shaped like the “real” traffic our product will receive. Our other approach has been even less good: upload a custom firmware to the network card and have that send the same Ethernet frame… This latter approach didn’t get better because it was a bit too complicated and badly documented on how to make a really good generator out of it. Even if I liked being able to upload custom code to my network card! 😉

Allow me to also mention that the problems with generating 10G is with small packet sizes, like 100 bytes or so as the main problem in the hardwares seem to the number of packets, not the payload part. Thus it is easier to do full line speed with 9000 bytes packets (jumbo frames) than the tiny ones we are likely to get when this product is in use by customers in the wild.

Update: this article was written in 2008. Please note that many things may have changed since then.

Filling our pipes

At around 13:43 GMT Friday the 5th of December 2008, the network that hosts a lot of services like this site, the curl site, the rockbox site, the c-ares site, CVS repositories, mailing lists, my own email and a set of other open source related stuff, become target of a vicious and intense DDoS attack. The attack was in progress until about 17:00 GMT on Sunday the 7th. The target network is owned and ran by CAG Contactor.

Tens of thousands of machines on the internet suddenly started trying to access a single host within the network. The IP they targeted has in fact never been publicly used as long as we’ve owned it (which is just a bit under two years) and it has never had any public services.

We have no clue whatsoever why someone would do this against us. We don’t have any particular services that anyone would gain anything by killing. We’re just very puzzled.

Our “ISP”, the guys we buy bandwidth and related services from, said they used up about 1 gigabit/sec worth of bandwidth and with our “mere” 10 megabit/sec connection it was of course impossible to offer any services while this was going on.

It turns out our ISP did the biggest blunder and is the main cause for the length of this outage: we could immediately spot that the target was a single IP in our class C network. We asked them to block all traffic to this IP as far out as possible to stop such packets from entering their network. And they did. For a short while there was silence and sense again.

For some reason that block “fell off” and our network got swamped again and it then remained unusable for another 48 hours or so. We know this, since our sysadmin guy investigated our firewall logs on midday Sunday and they all revealed that same target IP as destination. Since we only have a during-office-hours support deal with our network guys (as we’re just a consultant company with no services that really need 24 hour support) they simply didn’t care much about our problem but said they would deal with it Monday morning. So our sysadmin shutdown our firewall to save our own network from logging overload and what not.

Given the explanations I’ve got over phone (I have yet to see and analyze logs from this), it does sound like some sort of SYN flood and they attempted to connect to many different TCP ports.

4-5 hours after the firewall was shutdown, the machines outside of our firewall (but still on our network) suddenly became accessible again. The attack had stopped. We have not seen any traces of it since then. The firewall is still shutdown though, as the first guy coming to the office Monday morning will switch it on again and then – hopefully – all services should be back to normal.

Nvidia chipset audio now works

I’ve mentioned some of my audio problems on my Linux desktop before, and just the other day a friend suggested I should remove ‘esd’ (“apt-get remove esound”) as a means to fix one of my complaints and frequent annoyance (to get the sound working I had to kill esd first, then reload some drivers etc).

Recently my standard “trick” to get the sound brought to life had started to fail so I needed to get a new angle at this and boy, when I did a reboot now without esound installed my on-board sound works! And this without me doing any manual fiddling at all.

My motherboard’s sound info is displayed like this with lspci -v:

00:10.1 Audio device: nVidia Corporation MCP51 High Definition Audio (rev a2)
Subsystem: ASUSTeK Computer Inc. Device 81cb
Flags: bus master, 66MHz, fast devsel, latency 0, IRQ 22
Memory at fe024000 (32-bit, non-prefetchable) [size=16K]
Capabilities: <access denied>
Kernel driver in use: HDA Intel
Kernel modules: snd-hda-intel

Can Ipv6 be made to succeed?

One of the “big guys” in Sweden on issues such as this – Patrik Fältström – apparently held a keynote at a recent internet-related conference (“Internetdagarna”), and there he addressed this topic (in Swedish). His slides from his talk is available from his blog.

Indeed a good read. Again: in Swedish…

In summary: the state is currently bad. There’s little being done to improve things. All alternatives to ipv6 look like worse solutions.

Estimated-Content-Length

Greg Dean posted an interesting idea on the ietf-http-wg mailing list, suggesting that a new response header would be added to HTTP (Estimated-Content-Length:) to allow servers to indicate a rough estimation of the content length in situation where it doesn’t actually now the exact size before it starts sending data.

In the current world, HTTP servers can only report the exact size to the client or no size at all and then the client will have to just deal with the response becoming any size at all. It then has no way to know even roughly how large the data is or how long the transfer is going to take.

The discussions following Greg’s post seem mostly positive thus far from several people.