Category Archives: Work

Work stuff

HTTP Workshop, second day

All 37 of us gathered again on the 3rd floor in the Factory hotel here in Münster. Day two of the HTTP Workshop.

Jana Iyengar (from Google) kicked off this morning with his presentations on HTTP and the Transport Layer and QUIC. Very interesting area if you ask me – if you’re interested in this, you really should check out the video recording from the barbof they did on this topic in the recent Prague IETF. It is clear that a team with dedication, a clear use-case, a fearless approach to not necessarily maintaining “layers” and a handy control of widely used servers and clients can do funky experiments with new transport protocols.

I think there was general agreement with Jana’s statement that “Engagement with the transport community is critical” for us to really be able to bring better web protocols now and in the future. Jana’s excellent presentations were interrupted a countless number of times with questions, elaborations, concerns and sub-topics from attendees.

Gaetano Carlucci followed up with a presentation of their QUIC evaluations, showing how it performs under various situations like packet loss etc in comparison to HTTP/2. Lots of transport related discussions followed.

We rounded off the afternoon with a walk through the city (the rain stopped just minutes before we took off) to the town center where we tried some of the local beers while arguing their individual qualities. We then took off in separate directions and had dinner in smaller groups across the city.

snackstation

The HTTP Workshop started

So we started today. I won’t get into any live details or quotes from the day since it has all been informal and we’ve all agreed to not expose snippets from here without checking properly first. There will be a detailed report put together from this event afterwards.

The most critical peace of information is however how we must not walk on the red parts of the sidewalks here in Münster, as that’s the bicycle lane and they (the bicyclers) can be ruthless there.

We’ve had a bunch of presentations today with associated Q&A and follow-up discussions. Roy Fielding (HTTP spec pioneer) started out the series with a look at HTTP full of historic details and views from the past and where we are and what we’ve gone through over the years. Patrick Mcmanus (of Firefox HTTP networking) took us through some of the quirks of what a modern day browser has to do to speak HTTP and topped it off with a quiz regrading Firefox metrics. Did you know 31% of all Firefox HTTP requests get fulfilled by the cache or that 73% of all Firefox HTTP/2 connections are used more than once but only 7% of the HTTP/1 ones?

Poul-Henning Kamp (author of Varnish) brought his view on HTTP/2 from an intermediary’s point of view with a slightly pessimistic view, not totally unlike what he’s published before. Stefan Eissing (from Green Bytes) entertained us by talking about his work on writing mod_h2 for Apache Httpd (and how it might be included in the coming 2.4.x release) and we got to discuss a bit around timing measurements and its difficulties.

We rounded off the afternoon with a priority and dependency tree discussion topped off with a walk-through of numbers and slides from Kazuho Oku (author of H2O) on how dependency-trees really help and from Moto Ishizawa (from Yahoo! Japan) explaining Firefox’s (Patrick’s really) implementation of dependencies for HTTP/2.

We spent the evening having a 5-course (!) meal at a nice Italian restaurant while trading war stories about HTTP, networking and the web. Now it is close to midnight and it is time to reload and get ready for another busy day tomorrow.

I’ll round off with a picture of where most of the important conversations were had today:

kafeestation

HTTP Workshop 2015, day -1

http workshopI’ve traveled to a rainy and gray Münster, Germany, today and checked in to my hotel for the coming week and the HTTP Workshop. Tomorrow is the first day and I’m looking forward to it probably a little too much.

There is a whole bunch of attendees coming. Simply put, most of the world’s best brains and the most eager implementers of the HTTP stacks that are in use today and will be in use tomorrow (with a bunch of notable absentees of course but you know you’ll be missed). I’m happy and thrilled to be able to take part during this coming week.

daniel weekly

daniel weekly screenshot

My series of weekly videos, in lack of a better name called daniel weekly, reached episode 35 today. I’m celebrating this fact by also adding an RSS-feed for those of you who prefer to listen to me in an audio-only version.

As an avid podcast listener myself, I can certainly see how this will be a better fit to some. Most of these videos are just me talking anyway so losing the visual shouldn’t be much of a problem.

A typical episode

I talk about what I work on in my open source projects, which means a lot of curl stuff and occasional stuff from my work on Firefox for Mozilla. I also tend to mention events I attend and HTTP/networking developments I find interesting and grab my attention. Lots of HTTP/2 talk for example. I only ever express my own personal opinions.

It is generally an extremely geeky and technical video series.

Every week I mention a (curl) “bug of the week” that allows me to joke or rant about the bug in question or just mention what it is about. In episode 31 I started my “command line options of the week” series in which I explain one or a few curl command line options with some amount of detail. There are over 170 options so the series is bound to continue for a while. I’ve explained ten options so far.

I’ve set a limit for myself and I make an effort to keep the episodes shorter than 20 minutes. I’ve not succeed every time.

Analytics

The 35 episodes have been viewed over 17,000 times in total. Episode two is the most watched individual one with almost 1,500 views.

Right now, my channel has 190 subscribers.

The top-3 countries that watch my videos: USA, Sweden and UK.

Share of viewers that are female: 3.7%

RFC 7540 is HTTP/2

HTTP/2 is the new protocol for the web, as I trust everyone reading my blog are fully aware of by now. (If you’re not, read http2 explained.)

Today RFC 7540 was published, the final outcome of the years of work put into this by the tireless heroes in the HTTPbis working group of the IETF. Closely related to the main RFC is the one detailing HPACK, which is the header compression algorithm used by HTTP/2 and that is now known as RFC 7541.

The IETF part of this journey started pretty much with Mike Belshe’s posting of draft-mbelshe-httpbis-spdy-00 in February 2012. Google’s SPDY effort had been going on for a while and when it was taken to the httpbis working group in IETF, where a few different proposals on how to kick off the HTTP/2 work were debated.

HTTP team working in LondonThe first “httpbis’ified” version of that document (draft-ietf-httpbis-http2-00) was then published on November 28 2012 and the standardization work began for real. HTTP/2 was of course discussed a lot on the mailing list since the start, on the IETF meetings but also in interim meetings around the world.

In Zurich, in January 2014 there was one that I only attended remotely. We had the design team meeting in London immediately after IETF89 (March 2014) in the Mozilla offices just next to Piccadilly Circus (where I took the photos that are shown in this posting). We had our final in-person meetup with the HTTP team at Google’s offices in NYC in June 2014 where we ironed out most of the remaining issues.

In between those two last meetings I published my first version of http2 explained. My attempt at a lengthy and very detailed description of HTTP/2, including describing problems with HTTP/1.1 and motivations for HTTP/2. I’ve since published eleven updates.

HTTP team in London, debating protocol detailsThe last draft update of HTTP/2 that contained actual changes of the binary format was draft-14, published in July 2014. After that, the updates were in the language and clarifications on what to do when. There are some functional changes (added in -16 I believe) for like when which sort of frames are accepted that changes what a state machine should do, but it doesn’t change how the protocol looks on the wire.

RFC 7540 was published on May 15th, 2015

I’ve truly enjoyed having had the chance to be a part of this. There are a bunch of good people who made this happen and while I am most certainly forgetting key persons, some of the peeps that have truly stood out are: Mark, Julian, Roberto, Roy, Will, Tatsuhiro, Patrick, Martin, Mike, Nicolas, Mike, Jeff, Hasan, Herve and Willy.

http2 logo

The state and rate of HTTP/2 adoption

http2 logoThe protocol HTTP/2 as defined in the draft-17 was approved by the IESG and is being implemented and deployed widely on the Internet today, even before it has turned up as an actual RFC. Back in February, already upwards 5% or maybe even more of the web traffic was using HTTP/2.

My prediction: We’ll see >10% usage by the end of the year, possibly as much as 20-30% a little depending on how fast some of the major and most popular platforms will switch (Facebook, Instagram, Tumblr, Yahoo and others). In 2016 we might see HTTP/2 serve a majority of all HTTP requests – done by browsers at least.

Counted how? Yeah the second I mention a rate I know you guys will start throwing me hard questions like exactly what do I mean. What is Internet and how would I count this? Let me express it loosely: the share of HTTP requests (by volume of requests, not by bandwidth of data and not just counting browsers). I don’t know how to measure it and we can debate the numbers in December and I guess we can all end up being right depending on what we think is the right way to count!

Who am I to tell? I’m just a person deeply interested in protocols and HTTP/2, so I’ve been involved in the HTTP work group for years and I also work on several HTTP/2 implementations. You can guess as well as I, but this just happens to be my blog!

The HTTP/2 Implementations wiki page currently lists 36 different implementations. Let’s take a closer look at the current situation and prospects in some areas.

Browsers

Firefox and Chome have solid support since a while back. Just use a recent version and you’re good.

Internet Explorer has been shown in a tech preview that spoke HTTP/2 fine. So, run that or wait for it to ship in a public version soon.

There are no news about this from Apple regarding support in Safari. Give up on them and switch over to a browser that keeps up!

Other browsers? Ask them what they do, or replace them with a browser that supports HTTP/2 already.

My estimate: By the end of 2015 the leading browsers with a market share way over 50% combined will support HTTP/2.

Server software

Apache HTTPd is still the most popular web server software on the planet. mod_h2 is a recent module for it that can speak HTTP/2 – still in “alpha” state. Give it time and help out in other ways and it will pay off.

Nginx has told the world they’ll ship HTTP/2 support by the end of 2015.

IIS was showing off HTTP/2 in the Windows 10 tech preview.

H2O is a newcomer on the market with focus on performance and they ship with HTTP/2 support since a while back already.

nghttp2 offers a HTTP/2 => HTTP/1.1 proxy (and lots more) to front your old server with and can then help you deploy HTTP/2 at once.

Apache Traffic Server supports HTTP/2 fine. Will show up in a release soon.

Also, netty, jetty and others are already on board.

HTTPS initiatives like Let’s Encrypt, helps to make it even easier to deploy and run HTTPS on your own sites which will smooth the way for HTTP/2 deployments on smaller sites as well. Getting sites onto the TLS train will remain a hurdle and will be perhaps the single biggest obstacle to get even more adoption.

My estimate: By the end of 2015 the leading HTTP server products with a market share of more than 80% of the server market will support HTTP/2.

Proxies

Squid works on HTTP/2 support.

HAproxy? I haven’t gotten a straight answer from that team, but Willy Tarreau has been actively participating in the HTTP/2 work all the time so I expect them to have work in progress.

While very critical to the protocol, PHK of the Varnish project has said that Varnish will support it if it gets traction.

My estimate: By the end of 2015, the leading proxy software projects will start to have or are already shipping HTTP/2 support.

Services

Google (including Youtube and other sites in the Google family) and Twitter have ran HTTP/2 enabled for months already.

Lots of existing services offer SPDY today and I would imagine most of them are considering and pondering on how to switch to HTTP/2 as Chrome has already announced them going to drop SPDY during 2016 and Firefox will also abandon SPDY at some point.

My estimate: By the end of 2015 lots of the top sites of the world will be serving HTTP/2 or will be working on doing it.

Content Delivery Networks

Akamai plans to ship HTTP/2 by the end of the year. Cloudflare have stated that they “will support HTTP/2 once NGINX with it becomes available“.

Amazon has not given any response publicly that I can find for when they will support HTTP/2 on their services.

Not a totally bright situation but I also believe (or hope) that as soon as one or two of the bigger CDN players start to offer HTTP/2 the others might feel a bigger pressure to follow suit.

Non-browser clients

curl and libcurl support HTTP/2 since months back, and the HTTP/2 implementations page lists available implementations for just about all major languages now. Like node-http2 for javascript, http2-perl, http2 for Go, Hyper for Python, OkHttp for Java, http-2 for Ruby and more. If you do HTTP today, you should be able to switch over to HTTP/2 relatively easy.

More?

I’m sure I’ve forgotten a few obvious points but I might update this as we go as soon as my dear readers point out my faults and mistakes!

How long is HTTP/1.1 going to be around?

My estimate: HTTP 1.1 will be around for many years to come. There is going to be a double-digit percentage share of the existing sites on the Internet (and who knows how many that aren’t even accessible from the Internet) for the foreseeable future. For technical reasons, for philosophical reasons and for good old we’ll-never-touch-it-again reasons.

The survey

Finally, I asked friends on twitter, G+ and Facebook what they think the HTTP/2 share would be by the end of 2015 with the help of a little poll. This does of course not make it into any sound or statistically safe number but is still just a collection of what a set of random people guessed. A quick poll to get a rough feel. This is how the 64 responses I received were distributed:

http2 share at end of 2015

Evidently, if you take a median out of these results you can see that the middle point is between 5-10 and 10-15. I’ll make it easy and say that the poll showed a group estimate on 10%. Ten percent of the total HTTP traffic to be HTTP/2 at the end of 2015.

I didn’t vote here but I would’ve checked the 15-20 choice, thus a fair bit over the median but only slightly into the top quarter..

In plain numbers this was the distribution of the guesses:

0-5% 29.1% (19)
5-10% 21.8% (13)
10-15% 14.5% (10)
15-20% 10.9% (7)
20-25% 9.1% (6)
25-30% 3.6% (2)
30-40% 3.6% (3)
40-50% 3.6% (2)
more than 50% 3.6% (2)

Fixing the Func KB-460 ‘-key

Func KB-460 keyboardI use a Func KB-460 keyboard with Nordic layout – that basically means it is a qwerty design with the Nordic keys for “åäö” on the right side as shown on the picture above. (yeah yeah Swedish has those letters fairly prominent in the language, don’t mock me now)

The most annoying part with this keyboard has been that the key repeat on the apostrophe key has been sort of broken. If you pressed it and then another key, it would immediately generate another (or more than one) apostrophe. I’ve sort of learned to work around it with some muscle memory and treating the key with care but it hasn’t been ideal.

This problem is apparently only happening on Linux someone told me (I’ve never used it on anything else) and what do you know? Here’s how to fix it on a recent Debian machine that happens to run and use systemd so your mileage will vary if you have something else:

1. Edit the file “/lib/udev/hwdb.d/60-keyboard.hwdb”. It contains keyboard mappings of scan codes to key codes for various keyboards. We will add a special line for a single scan code and for this particular keyboard model only. The line includes the USB vendor and product IDs in uppercase and you can verify that it is correct with lsusb -v and check your own keyboard.

So, add something like this at the end of the file:

# func KB-460
keyboard:usb:v195Dp2030*
KEYBOARD_KEY_70031=reserved

2. Now update the database:

$ udevadm hwdb –update

3. … and finally reload the tweaks:

$ udevadm trigger

4. Now you should have a better working key and life has improved!

With a slightly older Debian without systemd, the instructions I got that I have not tested myself but I include here for the world:

1. Find the relevant input for the device by “cat /proc/bus/input/devices”

2. Make a very simple keymap. Make a file with only a single line like this:

$ cat /lib/udev/keymaps/func
0x70031 reserved

3 Map the key with ‘keymap’:

$ sudo /lib/udev/keymap -i /dev/input/eventX /lib/udev/keymaps/func

where X is the event number you figured out in step 1.

The related kernel issue.

TLS in HTTP/2

SSL padlockI’ve written the http2 explained document and I’ve done several talks about HTTP/2. I’ve gotten a lot of questions about TLS in association with HTTP/2 due to this, and I want to address some of them here.

TLS is not mandatory

In the HTTP/2 specification that has been approved and that is about to become an official RFC any day now, there is no language that mandates the use of TLS for securing the protocol. On the contrary, the spec clearly explains how to use it both in clear text (over plain TCP) as well as over TLS. TLS is not mandatory for HTTP/2.

TLS mandatory in effect

While the spec doesn’t force anyone to implement HTTP/2 over TLS but allows you to do it over clear text TCP, representatives from both the Firefox and the Chrome development teams have expressed their intents to only implement HTTP/2 over TLS. This means HTTPS:// URLs are the only ones that will enable HTTP/2 for these browsers. Internet Explorer people have expressed that they intend to also support the new protocol without TLS, but when they shipped their first test version as part of the Windows 10 tech preview, that browser also only supported HTTP/2 over TLS. As of this writing, there has been no browser released to the public that speaks clear text HTTP/2. Most existing servers only speak HTTP/2 over TLS.

The difference between what the spec allows and what browsers will provide is the key here, and browsers and all other user-agents are all allowed and expected to each select their own chosen path forward.

If you’re implementing and deploying a server for HTTP/2, you pretty much have to do it for HTTPS to get users. And your clear text implementation will not be as tested…

A valid remark would be that browsers are not the only HTTP/2 user-agents and there are several such non-browser implementations that implement the non-TLS version of the protocol, but I still believe that the browsers’ impact on this will be notable.

Stricter TLS

When opting to speak HTTP/2 over TLS, the spec mandates stricter TLS requirements than what most clients ever have enforced for normal HTTP 1.1 over TLS.

It says TLS 1.2 or later is a MUST. It forbids compression and renegotiation. It specifies fairly detailed “worst acceptable” key sizes and cipher suites. HTTP/2 will simply use safer TLS.

Another detail here is that HTTP/2 over TLS requires the use of ALPN which is a relatively new TLS extension, RFC 7301, which helps us negotiate the new HTTP version without losing valuable time or network packet round-trips.

TLS-only encourages more HTTPS

Since browsers only speak HTTP/2 over TLS (so far at least), sites that want HTTP/2 enabled must do it over HTTPS to get users. It provides a gentle pressure on sites to offer proper HTTPS. It pushes more people over to end-to-end TLS encrypted connections.

This (more HTTPS) is generally considered a good thing by me and us who are concerned about users and users’ right to privacy and right to avoid mass surveillance.

Why not mandatory TLS?

The fact that it didn’t get in the spec as mandatory was because quite simply there was never a consensus that it was a good idea for the protocol. A large enough part of the working group’s participants spoke up against the notion of mandatory TLS for HTTP/2. TLS was not mandatory before so the starting point was without mandatory TLS and we didn’t manage to get to another stand-point.

When I mention this in discussions with people the immediate follow-up question is…

No really, why not mandatory TLS?

The motivations why anyone would be against TLS for HTTP/2 are plentiful. Let me address the ones I hear most commonly, in an order that I think shows the importance of the arguments from those who argued them.

1. A desire to inspect HTTP traffic

looking-glassThere is a claimed “need” to inspect or intercept HTTP traffic for various reasons. Prisons, schools, anti-virus, IPR-protection, local law requirements, whatever are mentioned. The absolute requirement to cache things in a proxy is also often bundled with this, saying that you can never build a decent network on an airplane or with a satellite link etc without caching that has to be done with intercepts.

Of course, MITMing proxies that terminate SSL traffic are not even rare these days and HTTP/2 can’t do much about limiting the use of such mechanisms.

2. Think of the little ones

small-big-dogSmall devices cannot handle the extra TLS burden“. Either because of the extra CPU load that comes with TLS or because of the cert management in a billion printers/fridges/routers etc. Certificates also expire regularly and need to be updated in the field.

Of course there will be a least acceptable system performance required to do TLS decently and there will always be systems that fall below that threshold.

3. Certificates are too expensive

The price of certificates for servers are historically often brought up as an argument against TLS even it isn’t really HTTP/2 related and I don’t think it was ever an argument that was particularly strong against TLS within HTTP/2. Several CAs now offer zero-cost or very close to zero-cost certificates these days and with the upcoming efforts like letsencrypt.com, chances are it’ll become even better in the not so distant future.

pile-of-moneyRecently someone even claimed that HTTPS limits the freedom of users since you need to give personal information away (he said) in order to get a certificate for your server. This was not a price he was willing to pay apparently. This is however simply not true for the simplest kinds of certificates. For Domain Validated (DV) certificates you usually only have to prove that you “control” the domain in question in some way. Usually by being able to receive email to a specific receiver within the domain.

4. The CA system is broken

TLS of today requires a PKI system where there are trusted certificate authorities that sign certificates and this leads to a situation where all modern browsers trust several hundred CAs to do this right. I don’t think a lot of people are happy with this and believe this is the ultimate security solution. There’s a portion of the Internet that advocates for DANE (DNSSEC) to address parts of the problem, while others work on gradual band-aids like Certificate Transparency and OCSP stapling to make it suck less.

please trust me

My personal belief is that rejecting TLS on the grounds that it isn’t good enough or not perfect is a weak argument. TLS and HTTPS are the best way we currently have to secure web sites. I wouldn’t mind seeing it improved in all sorts of ways but I don’t believe running protocols clear text until we have designed and deployed the next generation secure protocol is a good idea – and I think it will take a long time (if ever) until we see a TLS replacement.

Who were against mandatory TLS?

Yeah, lots of people ask me this, but I will refrain from naming specific people or companies here since I have no plans on getting into debates with them about details and subtleties in the way I portrait their arguments. You can find them yourself if you just want to and you can most certainly make educated guesses without even doing so.

What about opportunistic security?

A text about TLS in HTTP/2 can’t be complete without mentioning this part. A lot of work in the IETF these days are going on around introducing and making sure opportunistic security is used for protocols. It was also included in the HTTP/2 draft for a while but was moved out from the core spec in the name of simplification and because it could be done anyway without being part of the spec. Also, far from everyone believes opportunistic security is a good idea. The opponents tend to say that it will hinder the adoption of “real” HTTPS for sites. I don’t believe that, but I respect that opinion because it is a guess as to how users will act just as well as my guess is they won’t act like that!

Opportunistic security for HTTP is now being pursued outside of the HTTP/2 spec and allows clients to upgrade plain TCP connections to instead do “unauthenticated TLS” connections. And yes, it should always be emphasized: with opportunistic security, there should never be a “padlock” symbol or anything that would suggest that the connection is “secure”.

Firefox supports opportunistic security for HTTP and it will be enabled by default from Firefox 37.

Translations

Пост доступен на сайте softdroid.net: Восстановление: TLS в HTTP/2. (Russian)

TLS in HTTP/2 (Kazakh)

More HTTP framing attempts

Previously, in my exciting series “improving the HTTP framing checks in Firefox” we learned that I landed a patch, got it backed out, struggled to improve the checks and finally landed the fixed version only to eventually get that one backed out as well.

And now I’ve landed my third version. The amendment I did this time:

When receiving HTTP content that is content-encoded and compressed I learned that when receiving deflate compression there is basically no good way for us to know if the content gets prematurely cut off. They seem to lack the footer too often for it to make any sense in checking for that. gzip streams however end with a footer so they are easier to reliably detect when they are incomplete. (As was discovered before, the Content-Length: is far too often not updated by the server so it is instead wrongly showing the uncompressed size.)

This (deflate vs gzip) knowledge is now used by the patch, meaning that deflate compressed downloads can be cut off without the browser noticing…

Will this version of the fix actually stick? I don’t know. There’s lots of bad voodoo out there in the HTTP world and I’m putting my finger right in the middle of some of it with this change. I’m pretty sure I’ve not written my last blog post on this topic just yet… If it sticks this time, it should show up in Firefox 39.

bolt-cutter

Tightening Firefox’s HTTP framing – again

An old http1.1 frameCall me crazy, but I’m at it again. First a little resume from our previous episodes in this exciting saga:

Chapter 1: I closed the 10+ year old bug that made the Firefox download manager not detect failed downloads, simply because Firefox didn’t care if the HTTP 1.1 Content-Length was larger than what was actually saved – after the connection potentially was cut off for example. There were additional details, but that was the bigger part.

Chapter 2: After having been included all the way to public release, we got a whole slew of bug reports immediately when Firefox 33 shipped and we had to revert parts of the fix I did.

Chapter 3.

Will it land before it turns 11 years old? The bug was originally submitted 2004-03-16.

Since chapter two of this drama brought back the original bugs again we still have to do something about them. I fully understand if not that many readers of this can even keep up of all this back and forth and juggling of HTTP protocol details, but this time we’re putting back the stricter frame checks with a few extra conditions to allow a few violations to remain but detect and react on others!

Here’s how I addressed this issue. I wanted to make the checks stricter but still allow some common protocol violations.

In particular I needed to allow two particular flaws that have proven to be somewhat common in the wild and were the reasons for the previous fix being backed out again:

A – HTTP chunk-encoded responses that lack the final 0-sized chunk.

B – HTTP gzipped responses where the Content-Length is not the same as the actual contents.

So, in order to allow A + B and yet be able to detect prematurely cut off transfers I decided to:

  1. Detect incomplete chunks then the transfer has ended. So, if a chunk-encoded transfer ends on exactly a chunk boundary we consider that fine. Good: This will allow case (A) to be considered fine. Bad: It will make us not detect a certain amount of cut-offs.
  2. When receiving a gzipped response, we consider a gzip stream that doesn’t end fine according to the gzip decompressing state machine to be a partial transfer. IOW: if a gzipped transfer ends fine according to the decompressor, we do not check for size misalignment. This allows case (B) as long as the content could be decoded.
  3. When receiving HTTP that isn’t content-encoded/compressed (like in case 2) and not chunked (like in case 1), perform the size comparison between Content-Length: and the actual size received and consider a mismatch to mean a NS_ERROR_NET_PARTIAL_TRANSFER error.

Firefox BallPrefs

When my first fix was backed out, it was actually not removed but was just put behind a config string (pref as we call it) named “network.http.enforce-framing.http1“. If you set that to true, Firefox will behave as it did with my original fix applied. It makes the HTTP1.1 framing fairly strict and standard compliant. In order to not mess with that setting that now has been around for a while (and I’ve also had it set to true for a while in my browser and I have not seen any problems with doing it this way), I decided to introduce my new changes pref’ed behind a separate variable.

network.http.enforce-framing.soft” is the new pref that is set to true by default with my patch. It will make Firefox do the detections outlined in 1 – 3 and setting it to false will disable those checks again.

Now I only hope there won’t ever be any chapter 4 in this story… If things go well, this will appear in Firefox 38.

Chromium

But how do they solve these problems in the Chromium project? They have slightly different heuristics (with the small disclaimer that I haven’t read their code for this in a while so details may have changed). First of all, they do not allow a missing final 0-chunk. Then, they basically allow any sort of misaligned size when the content is gzipped.

Update: this patch was subsequently backed out again due to several bug reports about it. I have yet to analyze exactly what went wrong.