Category Archives: cURL and libcurl

curl and/or libcurl related

webinar: testing curl for security

Alternative title: “testing, Q&A, CI, fuzzing and security in curl”

June 30 2020, at 10:00 AM in Pacific Time (17:00 GMT, 19:00 CEST).

Time: 30-40 minutes

Abstract: curl runs in some ten billion installations in the world, in
virtually every connected device on the planet and ported to more operating systems than most. In this presentation, curl’s lead developer Daniel Stenberg talks about how the curl project takes on testing, QA, CI and fuzzing etc, to make sure curl remains a stable and secure component for everyone while still getting new features and getting developed further. With a Q&A session at the end for your questions!

Register here at attend the live event. The video will be made available afterward.

Daniel presenting at cs3sthlm 2019

curl user survey 2020 analysis

In 2020, the curl user survey ran for the 7th consecutive year. It ended on May 31 and this year we manage to get feedback donated by 930 individuals.

Number of respondents per year

Analysis

Analyzing this huge lump of data, comments and shared experiences is a lot of work and I’m sorry it’s taken me several weeks to complete it. I’m happy to share this 47 page PDF document here with you:

curl user survey 2020 analysis

If you have questions on the content or find mistakes or things looking odd in the data or graphs, do let me know!

If you want to help out to do a better survey or analysis next year, I hope you know that you’d be much appreciated…

QUIC with wolfSSL

We have started the work on extending wolfSSL to provide the necessary API calls to power QUIC and HTTP/3 implementations!

Small, fast and FIPS

The TLS library known as wolfSSL is already very often a top choice when users are looking for a small and yet very fast TLS stack that supports all the latest protocol features; including TLS 1.3 support – open source with commercial support available.

As manufacturers of IoT devices and other systems with memory, CPU and footprint constraints are looking forward to following the Internet development and switching over to upcoming QUIC and HTTP/3 protocols, wolfSSL is here to help users take that step.

A QUIC reminder

In case you have forgot, here’s a schematic view of HTTPS stacks, old vs new. On the right side you can see HTTP/3, QUIC and the little TLS 1.3 box there within QUIC.

ngtcp2

There are no plans to write a full QUIC stack. There are already plenty of those. We’re talking about adjustments and extensions of the existing TLS library API set to make sure wolfSSL can be used as the TLS component in a QUIC stack.

One of the leading QUIC stacks and so far the only one I know of that does this, ngtcp2 is written to be TLS library agnostic and allows different TLS libraries to be plugged in as different backends. I believe it makes perfect sense to make such a plugin for wolfSSL to be a sensible step as soon as there’s code to try out.

A neat effect of that, would be that once wolfSSL works as a backend to ngtcp2, it should be possible to do full-fledged HTTP/3 transfers using curl powered by ngtcp2+wolfSSL. Contact us with other ideas for QUIC stacks you would like us to test wolfSSL with!

FIPS 140-2

We expect wolfSSL to be the first FIPS-based implementation to add support for QUIC. I hear this is valuable to a number of users.

When

This work begins now and this is just a blog post of our intentions. We and I will of course love to get your feedback on this and whatever else that is related. We’re also interested to get in touch with people and companies who want to be early testers of our implementation. You know where to find us!

I can promise you that the more interest we can sense to exist for this effort, the sooner we will see the first code to test out.

It seems likely that we’re not going to support any older TLS drafts for QUIC than draft-29.

curl meets gold level best practices

About four years ago I announced that curl was 100% compliant with the CII Best Practices criteria. curl was one of the first projects on that train to reach a 100% – primarily of course because we were early joiners and participants of the Best Practices project.

The point of that was just to highlight and underscore that we do everything we can in the curl project to act as a responsible open source project and citizen of the larger ecosystem. You should be able to trust curl, in every aspect.

Going above and beyond basic

Subsequently, the best practices project added higher levels of compliance. Basically adding a bunch of requirements so if you want to grade yourself at silver or even gold level there are a whole series of additional requirements to meet. At the time those were added, I felt they were asking for quite a lot of specifics that we didn’t provide in the curl project and with a bit of a sigh I felt I had to accept the fact that we would remain on “just” 100% compliance and only reaching a part of the way toward Silver and Gold. A little disheartened of course because I always want curl to be in the top.

So maybe Silver?

I had left the awareness of that entry listing in a dusty corner of my brain and hadn’t considered it much lately, when I noticed the other day that it was announced that the Linux kernel project reached gold level best practice.

That’s a project with around 50 times more developers and commits than curl for an average release (and even a greater multiplier for amount of code) so I’m not suggesting the two projects are comparable in any sense. But it made me remember our entry on CII Best Practices web site.

I came back, updated a few fields that seemed to not be entirely correct anymore and all of a sudden curl quite unexpectedly had a 100% compliance at Silver level!

Further?

If Silver was achievable, what’s actually left for gold?

Sure enough, soon there were only a few remaining criteria left “unmet” and after some focused efforts in the project, we had created the final set of documents with information that were previously missing. When we now finally could fill in links to those docs in the final few entries, project curl found itself also scoring a 100% at gold level.

Best Practices: Gold Level

What does it mean for us? What does it mean for you, our users?

For us, it is a double-check and verification that we’re doing the right things and that we are providing the right information in the project and we haven’t forgotten anything major. We already knew that we were doing everything open source in a pretty good way, but getting a bunch of criteria that insisted on a number of things also made us go the extra way and really provide information for everything in written form. Some of what previously really only was implied, discussed in IRC or read between lines in various pull requests.

I’m proud to lead the curl project and I’m proud of all our maintainers and contributors.

For users, having curl reach gold level makes it visible that we’re that kind of open source project. We’re part of this top clique of projects. We care about every little open source detail and this should instill trust and confidence in our users. You can trust curl. We’re a golden open source project. We’re with you all the way.

The final criteria we checked off

Which was the last criteria of them all for curl to fulfill to reach gold?

The project MUST document its code review requirements, including how code review is conducted, what must be checked, and what is required to be acceptable (link)

This criteria is now fulfilled by the brand new document CODE_REVIEW.md.

What’s next?

We’re working on the next release. We always do. Stop the slacking now and get back to work!

Credits

Gold image by Erik Stein from Pixabay

800 authors and counting

Today marks the day when we merged the commit authored by the 800th person in the curl project.

We turned 22 years ago this spring but it really wasn’t until 2010 when we switched to git when we started to properly keep track of every single author in the project. Since then we’ve seen a lot of new authors and a lot of new code.

The “explosion” is clearly visible in this graph generated with fresh data just this morning (while we were still just 799 authors). See how we’ve grown maybe 250 authors since 1 Jan 2018.

Author number 800 is named Nicolas Sterchele and he submitted an update of the TODO document. Appreciated!

As the graph above also shows, a majority of all authors only ever authored a single commit. If you did 10 commits in the curl project, you reach position #61 among all the committers while 100 commits takes you all the way up to position #13.

Become one!

If you too want to become one of the cool authors of curl, I fine starting point for that journey could be the Help Us document. If that’s not enough, you’re also welcome to contact me privately or maybe join the IRC channel for some socializing and “group mentoring”.

If we keep this up, we could reach a 1,000 authors in 2022…

curl ootw: –ftp-skip-pasv-ip

(Other command line options of the week.)

--ftp-skip-pasv-ip has no short option and it was added to curl in 7.14.2.

Crash course in FTP

Remember how FTP is this special protocol for which we create two connections? One for the “control” where we send commands and read responses and then a second one for the actual data transfer.

When setting up the second connection, there are two ways to do it: the active way and the passive way. The wording there is basically in the eyes of the FTP server: should the server be active or passive in the creation and that’s the key. The traditional underlying FTP commands to do this is either PORT or PASV.

Due to the prevalence of firewalls and other network “complications” these days, the passive style is dominant for FTP. That’s when the client asks the server to listen on a new port (by issuing the PASV command) and then the client connects to the server with a second connection.

The PASV response

When a server responds to a PASV command that the client sends to it, it sends back an IPv4 address and a port number for the client to connect to – in a rather arcane way that looks like this:

227 Entering Passive Mode (192,168,0,1,156,64)

This says the server listens to the IPv4 address 192.168.0.1 on port 40000 (== 156 x 256 + 64).

However, sometimes the server itself isn’t perfectly aware of what IP address it actually is accessible as “from the outside”. Maybe there’s a NAT involved somewhere, maybe there are even more than one NAT between the client and the server.

We know better

For the cases when the server responds with a crazy address, curl can be told to ignore the address in the response and instead assume that the IP address used for the control connection will in fact work for the data connection as well – this is generally true and has actually become even more certain over time as FTP servers these days typically never return a different IP address for PASV.

Enter the “we know better than you” option --ftp-skip-pasv-ip.

What about IPv6 you might ask

The PASV command, as explained above, is explicitly only working with IPv4 as it talks about numerical IPv4 addresses. FTP was actually first described in the early 1970s, quite a lot time before IPv6 was born.

When FTP got support for IPv6, another command was introduced as a PASV replacement.: the EPSV command. If you run curl with -v (verbose mode) when doing FTP transfers, you will see that curl does indeed first try to use EPSV before it eventually falls back and tries PASV if the previous command doesn’t work.

The response to the EPSV command doesn’t even include an IP address but then it always assumes the same address as the control connection and it only returns back a TCP port number.

Example

Download a file from that server giving you a crazy PASV response:

curl --ftp-skip-pasv-ip ftp://example.com/file.txt

Related options

Change to active FTP mode with --ftp-port, switch off EPSV attempts with --disable-epsv.

on-demand buffer alloc in libcurl

Okay, so I’ll delve a bit deeper into the libcurl internals than usual here. Beware of low-level talk!

There’s a never-ending stream of things to polish and improve in a software project and curl is no exception. Let me tell you what I fell over and worked on the other day.

Smaller than what holds Linux

We have users who are running curl on tiny devices, often put under the label of Internet of Things, IoT. These small systems typically have maybe a megabyte or two of ram and flash and are often too small to even run Linux. They typically run one of the many different RTOS flavors instead.

It is with these users in mind I’ve worked on the tiny-curl effort. To make curl a viable alternative even there. And believe me, the world of RTOSes and IoT is literally filled with really low quality and half-baked HTTP client implementations. Often certainly very small but equally as often with really horrible shortcuts or protocol misunderstandings in them.

Going with curl in your IoT device means going with decades of experience and reliability. But for libcurl to be an option for many IoT devices, a libcurl build has to be able to get really small. Both the footprint on storage but also in the required amount of dynamic memory used while executing.

Being feature-packed and attractive for the high-end users and yet at the same time being able to get really small for the low-end is a challenge. And who doesn’t like a good challenge?

Reduce reduce reduce

I’ve set myself on a quest to make it possible to build libcurl smaller than before and to use less dynamic memory. The first tiny-curl releases were only the beginning and I already then aimed for a libcurl + TLS library within 100K storage size. I believe that goal was met, but I also think there’s more to gain.

I will make tiny-curl smaller and use less memory by making sure that when we disable parts of the library or disable specific features and protocols at build-time, they should no longer affect storage or dynamic memory sizes – as far as possible. Tiny-curl is a good step in this direction but the job isn’t done yet – there’s more “dead meat” to carve off.

One example is my current work (PR #5466) on making sure there’s much less proxy remainders left when libcurl is built without support for such. This makes it smaller on disk but also makes it use less dynamic memory.

To decrease the maximum amount of allocated memory for a typical transfer, and in fact for all kinds of transfers, we’ve just switched to a model with on-demand download buffer allocations (PR #5472). Previously, the download buffer for a transfer was allocated at the same time as the handle (in the curl_easy_init call) and kept allocated until the handle was cleaned up again (with curl_easy_cleanup). Now, we instead lazy-allocate it first when the transfer starts, and we free it again immediately when the transfer is over.

It has several benefits. For starters, the previous initial allocation would always first allocate the buffer using the default size, and the user could then set a smaller size that would realloc a new smaller buffer. That double allocation was of course unfortunate, especially on systems that really do want to avoid mallocs and want a minimum buffer size.

The “price” of handling many handles drastically went down, as only transfers that are actively in progress will actually have a receive buffer allocated.

A positive side-effect of this refactor, is that we could now also make sure the internal “closure handle” actually doesn’t use any buffer allocation at all now. That’s the “spare” handle we create internally to be able to associate certain connections with, when there’s no user-provided handles left but we need to for example close down an FTP connection as there’s a command/response procedure involved.

Downsides? It means a slight increase in number of allocations and frees of dynamic memory for doing new transfers. We do however deem this a sensible trade-off.

Numbers

I always hesitate to bring up numbers since it will vary so much depending on your particular setup, build, platform and more. But okay, with that said, let’s take a look at the numbers I could generate on my dev machine. A now rather dated x86-64 machine running Linux.

For measurement, I perform a standard single transfer getting a 8GB file from http://localhost, written to stderr:

curl -s http://localhost/8GB -o /dev/null

With all the memory calls instrumented, my script counts the number of memory alloc/realloc/free/etc calls made as well as the maximum total memory allocation used.

The curl tool itself sets the download buffer size to a “whopping” 100K buffer (as it actually makes a difference to users doing for example transfers from localhost or other really high bandwidth setups or when doing SFTP over high-latency links). libcurl is more conservative and defaults it to 16K.

This command line of course creates a single easy handle and makes a single HTTP transfer without any redirects.

Before the lazy-alloc change, this operation would peak at 168978 bytes allocated. As you can see, the 100K receive buffer is a significant share of the memory used.

After the alloc work, the exact same transfer instead ended up using 136188 bytes.

102,400 bytes is for the receive buffer, meaning we reduced the amount of “extra” allocated data from 66578 to 33807. By 49%

Even tinier tiny-curl: in a feature-stripped tiny-curl build that does HTTPS GET only with a mere 1K receive buffer, the total maximum amount of dynamically allocated memory is now below 25K.

Caveats

The numbers mentioned above only count allocations done by curl code. It does not include memory used by system calls or, when used, third party libraries.

Landed

The changes mentioned in this blog post have landed in the master branch and will ship in the next release: curl 7.71.0.

curl ootw: –socks5

(Previous option of the week posts.)

--socks5 was added to curl back in 7.18.0. It takes an argument and that argument is the host name (and port number) of your SOCKS5 proxy server. There is no short option version.

Proxy

A proxy, often called a forward proxy in the context of clients, is a server that the client needs to connect to in order to reach its destination. A middle man/server that we use to get us what we want. There are many kinds of proxies. SOCKS is one of the proxy protocols curl supports.

SOCKS

SOCKS is a really old proxy protocol. SOCKS4 is the predecessor protocol version to SOCKS5. curl supports both and the newer version of these two, SOCKS5, is documented in RFC 1928 dated 1996! And yes: they are typically written exactly like this, without any space between the word SOCKS and the version number 4 or 5.

One of the more known services that still use SOCKS is Tor. When you want to reach services on Tor, or the web through Tor, you run the client on your machine or local network and you connect to that over SOCKS5.

Which one resolves the host name

One peculiarity with SOCKS is that it can do the name resolving of the target server either in the client or have it done by the proxy. Both alternatives exists for both SOCKS versions. For SOCKS4, a SOCKS4a version was created that has the proxy resolve the host name and for SOCKS5, which is really the topic of today, the protocol has an option that lets the client pass on the IP address or the host name of the target server.

The --socks5 option makes curl itself resolve the name. You’d instead use --socks5-hostname if you want the proxy to resolve it.

--proxy

The --socks5 option is basically considered obsolete since curl 7.21.7. This is because starting in that release, you can now specify the proxy protocol directly in the string that you specify the proxy host name and port number with already. The server you specify with --proxy. If you use a socks5:// scheme, curl will go with SOCKS5 with local name resolve but if you instead use socks5h:// it will pick SOCKS5 with proxy-resolved host name.

SOCKS authentication

A SOCKS5 proxy can also be setup to require authentication, so you might also have to specify name and password in the --proxy string, or set separately with --proxy-user. Or with GSSAPI, so curl also supports --socks5-gssapi and friends.

Examples

Fetch HTTPS from example.com over the SOCKS5 proxy at socks5.example.org port 1080. Remember that –socks5 implies that curl resolves the host name itself and passes the address to to use to the proxy.

curl --socks5 socks5.example.org:1080 https://example.com/

Or download FTP over the SOCKS5 proxy at socks5.example port 9999:

curl --socks5 socks5.example:9999 ftp://ftp.example.com/SECRET

Useful trick!

A very useful trick that involves a SOCKS proxy is the ability OpenSSH has to create a SOCKS tunnel for us. If you sit at your friends house, you can open a SOCKS proxy to your home machine and access the network via that. Like this. First invoke ssh, login to your home machine and ask it to setup a SOCKS proxy:

ssh -D 8080 user@home.example.com

Then tell curl (or your browser, or both) to use this new SOCKS proxy when you want to access the Internet:

curl --socks5 localhost:8080 https:///www.example.net/

This will effectively hide all your Internet traffic from your friends snooping and instead pass it all through your encrypted ssh tunnel.

Related options

As already mentioned above, --proxy is typically the preferred option these days to set the proxy. But --socks5-hostname is there too and the related --socks4 and --sock4a.

AI-powered code submissions

Who knows, maybe May 18 2020 will mark some sort of historic change when we look back on this day in the future.

On this day, the curl project received the first “AI-powered” submitted issues and pull-requests. They were submitted by MonocleAI, which is described as:

MonocleAI, an AI bug detection and fixing platform where we use AI & ML techniques to learn from previous vulnerabilities to discover and fix future software defects before they cause software failures.

I’m sure these are still early days and we can’t expect this to be perfected yet, but I would still claim that from the submissions we’ve seen so far that this is useful stuff! After I tweeted about this “event”, several people expressed interest in how well the service performs, so let me elaborate on what we’ve learned already in this early phase. I hope I can back in the future with updates.

Disclaimers: I’ve been invited to try this service out as an early (beta?) user. No one is saying that this is complete or that it replaces humans. I have no affiliation with the makers of this service other than as a receiver of their submissions to the project I manage. Also: since this service is run by others, I can’t actually tell how much machine vs humans this actually is or how much human “assistance” the AI required to perform these actions.

I’m looking forward to see if we get more contributions from this AI other than this first batch that we already dealt with, and if so, will the AI get better over time? Will it look at how we adjusted its suggested changes? We know humans adapt like that.

Pull-request quality

Monocle still needs to work on adapting its produced code to follow the existing code style when it submits a PR, as a human would. For example, in curl we always write the assignment that initializes a variable to something at declaration time immediately on the same line as the declaration. Like this:

int name = 0;

… while Monocle, when fixing cases where it thinks there was an assignment missing, adds it in a line below, like this:

int name;
name = 0;

I can only presume that in some projects that will be the preferred style. In curl it is not.

White space

Other things that maybe shouldn’t be that hard for an AI to adapt to, as you’d imagine an AI should be able to figure out, is other code style issues such as where to use white space and where not no. For example, in the curl project we write pointers like char * or void *. That is with the type, a space and then an asterisk. Our code style script will yell if you do this wrong. Monocle did it wrong and used it without space: void*.

C89

We use and stick to the most conservative ANSI C version in curl. C89/C90 (and we have CI jobs failing if we deviate from this). In this version of C you cannot mix variable declarations and code. Yet Monocle did this in one of its PRs. It figured out an assignment was missing and added the assignment in a new line immediately below, which of course is wrong if there are more variables declared below!

int missing;
missing = 0; /* this is not C89 friendly */
int fine = 0;

NULL

We use the symbol NULL in curl when we zero a pointer . Monocle for some reason decided it should use (void*)0 instead. Also seems like something virtually no human would do, and especially not after having taken a look at our code…

The first issues

MonocleAI found a few issues in curl without filing PRs for them, and they were basically all of the same kind of inconsistency.

It found function calls for which the return code wasn’t checked, while it was checked in some other places. With the obvious and rightful thinking that if it was worth checking at one place it should be worth checking at other places too.

Those kind of “suspicious” code are also likely much harder fix automatically as it will include decisions on what the correct action should actually be when checks are added, or perhaps the checks aren’t necessary…

Credits

Image by Couleur from Pixabay

curl ootw: –range

--range or -r for short. As the name implies, this option is for doing “range requests”. This flag was available already in the first curl release ever: version 4.0. This option requires an extra argument specifying the specific requested range. Read on the learn how!

What exactly is a range request?

Get a part of the remote resource

Maybe you have downloaded only a part of a remote file, or maybe you’re only interested in getting a fraction of a huge remote resource. Those are two situations in which you might want your internet transfer client to ask the server to only transfer parts of the remote resource back to you.

Let’s say you’ve tried to download a 32GB file (let’s call it a huge file) from a slow server on the other side of the world and when you only had 794 bytes left to transfer, the connection broke and the transfer was aborted. The transfer took a very long time and you prefer not to just restart it from the beginning and yet, with many file formats those final 794 bytes are critical and the content cannot be handled without them.

We need those final 794 bytes! Enter range requests.

With range requests, you can tell curl exactly what byte range to ask for from the server. “Give us bytes 12345-12567” or “give us the last 794 bytes”. Like this:

curl --range 12345-12567 https://example.com/

and:

curl --range -794 https://example.com/

This works with curl with several different protocols: HTTP(S), FTP(S) and SFTP. With HTTP(S), you can even be more fancy and ask for multiple ranges in the same request. Maybe you want the three sections of the resource?

curl --range 0-1000,2000-3000,4000-5000 https://example.com/

Let me again emphasize that this multi-range feature only exists for HTTP(S) with curl and not with the other protocols, and the reason is quite simply that HTTP provides this by itself and we haven’t felt motivated enough to implement it for the other protocols.

Not always that easy

The description above is for when everything is fine and easy. But as you know, life is rarely that easy and straight forward as we want it to be and nether is the --range option. Primarily because of this very important detail:

Range support in HTTP is optional.

It means that when curl asks for a particular byte range to be returned, the server might not obey or care and instead it delivers the whole thing anyway. As a client we can detect this refusal, since a range response has a special HTTP response code (206) which won’t be used if the entire thing is sent back – but that’s often of little use if you really want to get the remaining bytes of a larger resource out of which you already have most downloaded since before.

One reason it is optional for HTTP and why many sites and pages in the wild refuse range requests is that those sites and pages generate contend on demand, dynamically. If we ask for a byte range from a static file on disk in the server offering a byte range is easy. But if the document is instead the result of lots of scripts and dynamic content being generated uniquely in the server-side at the time of each request, it isn’t.

HTTP 416 Range Not Satisfiable

If you ask for a range that is outside of what the server can provide, it will respond with a 416 response code. Let’s say for example you download a complete 200 byte resource and then you ask that server for the range 200-202 – you’ll get a 416 back because 200 bytes are index 0-199 so there’s nothing available at byte index 200 and beyond.

HTTP other ranges

--range for HTTP content implies “byte ranges”. There’s this theoretical support for other units of ranges in HTTP but that’s not supported by curl and in fact is not widely used over the Internet. Byte ranges are complicated enough!

Related command line options

curl also offers the --continue-at (-C) option which is a perhaps more user-friendly way to resume transfers without the user having to specify the exact byte range and handle data concatenation etc.